|
References
|
|
[1] |
Merritt, H. E., Hydraulic Control Systems, Wiley, New York, 1991, 368 pp. |
[2] |
Has, Z. and Rahmat, M. F., “Application of Self-Tuning Fuzzy PID Controller on Industrial Hydraulic Actuator Using System Identification Approach”, Int. J. Smart Sensing Intell. Syst., 2:2 (2009), 246-–261 |
[3] |
Huang, Y. J., Kuo, T. C., and Lee, H. K., “Fuzzy-PD Controller Design with Stability Equations for Electro-Hydraulic Servo Systems”, ICCAS'2007: Proc. of the Internat. Conf. on Control, Automation and Systems (Seoul, Korea, Oct 2007), 2407–2410 |
[4] |
Alleyne, A. and Liu, R., “A Simplified Approach to Force Control for Electro-Hydraulic Systems”, Control Eng. Pract., 8:12 (2000), 1347–1356 |
[5] |
Lizarde, C., Loukianov, A. G., and Sanchez, E., “Force Tracking Neural Block Control for an Electro-Hydraulic Actuator via Second-Order Sliding Mode”, Int. J. Robust Nonlinear Control, 18:3 (2008), 319–332 |
[6] |
Avila, M. A., Loukianov, A. G., and Sanchez, E. N., “Electro-Hydraulic Actuator Trajectory Tracking”, Proc. of the American Control Conference (Boston, Mass., 2004), v. 3, 2603–2608 |
[7] |
Cotsaftis, M. and Keskinen, E., “Smooth High Precision Contact Position Control of Rotating Cylinders with Hydraulic Actuators”, Proc. of the 12th IFToMM World Congress (Besancon, France, 2007), 738–743 |
[8] |
Lu, X., Du, F., Jia, Q., Ren, B., and Wang, X., “Sliding Mode Force Control of an Electrohydraulic Servo System with RBF Neural Network Compensation”, Mechanika, 25:1 (2019), 32–37 |
[9] |
Guan, C. and Pan, S., “Adaptive Sliding Mode Control of Electro-Hydraulic System with Nonlinear Unknown Parameters”, Control Eng. Pract., 16:11 (2008), 1275–1284 |
[10] |
Raade, J. W. and Kazerooni, H., “Analysis and Design of a Novel Hydraulic Power Source for Mobile Robots”, IEEE Trans. Autom. Sci. Eng., 2:3 (2005), 226–232 |
[11] |
Wang, X., “Modeling and Control of a Torque Load System with Servo Actuators Dynamics”, Proc. Inst. Mech. Eng. G J. Aer., 231:9 (2016), 1676–1685 |
[12] |
Sedov, L. I., Similarity and Dimensional Methods in Mechanics, 10th ed., CRC, Boca Raton, Fla., 1993, 496 pp. |
[13] |
Bukhgolts, N. N., Basic Course of Theoretical Mechanics: P. 2, Nauka, Moscow, 1972, 328 pp. (Russian) |
[14] |
Sonin, A. A., The Physical Basis of Dimensional Analysis, 2nd ed., MIT, Cambridge, Mass., 2001, 57 pp. |
[15] |
Mamontov, M. A., Similarity, Min. Oboron. SSSR, Moscow, 1971, 59 pp. (Russian) |
[16] |
Yang, G., Yao, J., Le, G., and Ma, D., “Adaptive Integral Robust Control of Hydraulic Systems with Asymptotic Tracking”, Mechatronics, 40 (2016), 78–86 |
[17] |
Guo, K., Wei, J., Fang, J., Feng, R., and Wang, X., “Position Tracking Control of Electro-Hydraulic Single-Rod Actuator Based on an Extended Disturbance Observer”, Mechatronics, 27 (2015), 47–56 |
[18] |
Tri, M. N., Nam, C. N. D., Park, G. H., and Ahn, K. K., “Trajectory Control of an Electro Hydraulic Actuator Using an Iterative Backstepping Control Scheme”, Mechatronics, 29 (2015), 96–102 |
[19] |
Li, L., Huang, H., Zhao, F., Triebe, M. J., and Liu, Z., “Analysis of a Novel Energy-Efficient System with Double-Actuator for Hydraulic Press”, Mechatronics, 47 (2017), 77–87 |
[20] |
Márton, L., Fodor, S., and Sepehri, N., “A Practical Method for Friction Identification in Hydraulic Actuators”, Mechatronics, 21:1 (2011), 350–-356 |
[21] |
Misyurin, S. Yu. and Kreinin, G. V., “Power Optimization Criteria of a Mechanical Unit of an Automated Actuator”, Dokl. Phys., 60:1 (2015), 15–18 ; Dokl. Akad. Nauk, 460:1 (2015), 39–42 (Russian) |
[22] |
Misyurin, S. Yu. and Kreinin, G. V., “Dynamics and Design of a Power Unit with a Hydraulic Piston Actuator”, Dokl. Phys., 61:7 (2016), 354–359 ; Dokl. Akad. Nauk, 469:3 (2016), 302–307 (Russian) |
[23] |
Cotsaftis, M. and Keskinen, E., “Smooth High Precision Contact Position Control of Rotating Cylinders with Hydraulic Actuators”, Proc. of the 12th IFToMM World Congress (Besancon, France, 2007), 738–743 |