0
2013
Impact Factor

    Dynamical Model for the Anomalous Transport of a Passive Scalar in a Reverse Barotropic Jet Flow

    2019, Vol. 15, no. 3, pp.  251-260

    Author(s): Reutov V. P., Rybushkina G. V.

    The anomalous transport of a passive scalar at the excitation of immovable chains of wave structures with closed streamlines in a barotropic reverse jet flow is studied. The analysis is performed for a plane-parallel flow in a channel between rigid walls in the presence of the beta effect and external friction. Periodic boundary conditions are set along the channel, while nonpercolation and sticking conditions are adopted on the channel walls. The equations of a barotropic (quasi-two-dimensional) flow are solved numerically using a pseudospectral method. A reverse jet with a “two-hump” asymmetric velocity profile facilitating the faster transition to the complex dynamics of the Eulerian flow fields is considered. Unlike the most developed kinematic models of anomalous transport, the basic chain of structures becomes unsteady due to the birth of supplementary perturbations at saturation of barotropic instability. A regular (multiharmonic) regime of wave generation is shown to appear due to the excitation of a new flow mode. Immovable structure chains giving rise to anomalous transport are obtained in the multiharmonic and chaotic regimes. The velocity of the chains of structures was determined by watching movies made according to the computations of the streamlines. It is revealed that the onset of anomalous transport in a regular regime is possible at essentially lower supercriticality compared to the chaotic regime. Trajectories of the tracer particles containing alternations of long flights and oscillations are drawn in the chaotic regime. The time dependences of the averaged (over ensemble) displacement of the tracer particles and its variance are obtained for two basic regimes of generation with immovable chains of structures, and the corresponding exponents of the power laws are determined. Normal advection is revealed in the regular regime, while anomalous diffusion arises in both regimes and may be classified as a “superdiffusion”.
    Keywords: barotropic reverse jet flow, chains of wave structures, dynamical chaos, anomalous advection and diffusion
    Citation: Reutov V. P., Rybushkina G. V., Dynamical Model for the Anomalous Transport of a Passive Scalar in a Reverse Barotropic Jet Flow, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  251-260
    DOI:10.20537/nd190304


    Download File
    PDF, 890.4 Kb

    References

    [1] Vasavada, A. R. and Showman, A. P., “Jovian Atmospheric Dynamics: An Update after Galileo and Cassini”, Rep. Prog. Phys., 68:8 (2005), 1935–1996  crossref  mathscinet  adsnasa  elib
    [2] Nezlin, M. V. and Snezhkin, E. N., Rossby Vortices, Spiral Structures, Solitons: Astrophysics and Plasma Physics in Shallow Water Experiments, Springer, Berlin, 1993, ix, 223 pp.  mathscinet
    [3] Haines, K. H. and Malanotte-Rizzoli, P., “Isolated Anomalies in Westerly Jet Streams: A Unified Approach”, J. Atmos. Sci., 48:4 (1991), 510–526  crossref  adsnasa
    [4] Chkhetiani, O. G., Kalashnik, M. V., and Chagelishvili, G. D., “Dynamics and Blocking of Rossby Waves in Quasi-Two-Dimensional Shear Flows”, JETP Lett., 101:2 (2015), 79–84  mathnet  crossref  adsnasa; Pis'ma v Zh. Èksper. Teoret. Fiz., 101:2 (2015), 84–89 (Russian)
    [5] del-Castillo-Negrete, D., “Asymmetric Transport and Non-Gaussian Statistics of Passive Scalars in Vortices in Shear”, Phys. Fluids, 10:3 (1998), 576–594  crossref  mathscinet  zmath  adsnasa
    [6] Koshel, K. V. and Prants, S. V., “Chaotic Advection in the Ocean”, Physics-Uspekhi, 49:11 (2006), 1151–1178  mathnet  crossref  adsnasa  elib; Uspekhi Fiz. Nauk, 176:11 (2006), 1177–1206 (Russian)  crossref
    [7] Wiggins, S., “The Dynamical Systems Approach to Lagrangian Transport in Oceanic Flows”, Annu. Rev. Fluid Mech., 37 (2005), 295–328  crossref  mathscinet  zmath  adsnasa  elib
    [8] Finn, J. M. and del-Castillo-Negrete, D., “Lagrangian Chaos and Eulerian Chaos in Shear Flow Dynamics”, Chaos, 11:4 (2001), 816–832  crossref  mathscinet  zmath  adsnasa
    [9] Ryzhov, E. A. and Koshel, K. V., “Resonance Phenomena in a Two-Layer Two-Vortex Shear Flow”, Chaos, 26:11 (2016), 113116, 12 pp.  crossref  mathscinet  zmath  adsnasa  elib
    [10] Shagalov, S. V., Reutov, V. P., and Rybushkina, G. V., “Asymptotic Analysis of Transition to Turbulence and Chaotic Advection in Shear Zonal Flows on a Beta-Plane”, Izv. Atmos. Ocean. Phys., 46:1 (2010), 95–108  crossref  zmath  elib; Izv. AN. Fiz. Atmos. i Okeana, 46:1 (2010), 105–118 (Russian)  zmath
    [11] Reutov, V. P. and Rybushkina, G. V., “Anomalous Transport of a Passive Scalar at the Transition to Dynamical Chaos in a Barotropic Shear Layer”, Eur. J. Mech. B Fluids, 74 (2019), 211–218  crossref  mathscinet
    [12] Reutov, V. P. and Rybushkina, G. V., “Unsteady Chains of Wave Structures and Anomalous Transport of a Passive Scalar in a Barotropic Jet Flow”, Izv. Atmos. Ocean. Phys., 55:6 (2019)  crossref  mathscinet
    [13] Dolzhanskii, F. V., Krymov, V. A., and Manin, D. Yu., “Stability and Vortex Structures of Quasi-Two-Dimensional Shear Flows”, Sov. Phys. Usp., 33:7 (1990), 495–520  crossref  mathscinet  adsnasa; Uspekhi Fiz. Nauk, 160:7 (1990), 1–47 (Russian)  crossref
    [14] Reutov, V. P. and Rybushkina, G. V., “Mode Switching and Dynamical Chaos in Quasi-Two-Dimensional Jet Flows”, Nelin. Mir, 14:6 (2016), 22–31 (Russian)
    [15] Orszag, S. A., “Numerical Simulation of Incompressible Flows within Simple Boundaries: 1. Galerkin (Spectral) Representations”, Stud. Appl. Math., 50:4 (1971), 293–327  crossref  mathscinet  zmath
    [16] Reutov, V. P. and Rybushkina, G. V., “Different-Scale Convective Structures in a Cooled Liquid Layer with a Horizontal Shear Flow”, Phys. Fluids, 25:7 (2013), 074101, 16 pp.  crossref  adsnasa  elib



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License