Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields

    Received 22 July 2019

    2019, Vol. 15, no. 3, pp.  285-292

    Author(s): Hussein A. M.

    We consider a quit general problem of motion of an asymmetric rigid body about a fixed point, acted upon by an irreducible skew combination of gravitational, electric and magnetic fields. Two of those three fields are uniform and the third has a more complicated structure. The existence of precessional motions about a nonvertical axis is established. Conditions on the parameters of the system are obtained. An alternative physical interpretation is given in the framework of the problem of motion of a rigid body immersed in an incompressible perfect fluid, acted upon by torques due to two uniform fields.
    Keywords: rigid body, precessional motion, three irreducible fields
    Citation: Hussein A. M., Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  285-292

    Download File
    PDF, 225.85 Kb


    [1] Gorr, G. V., “A New Solution of a Generalized Problem on the Motion of a Body with a Fixed Point”, J. Appl. Math. Mech., 56:3 (1992), 443–446  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 56:3 (1992), 532–535 (Russian)  mathscinet  zmath
    [2] Gorr, G. V., “Precessional Motions in Rigid Body Dynamics and the Dynamics of Systems of Coupled Rigid Bodies”, J. Appl. Math. Mech., 67:4 (2003), 511–523  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 67:4 (2003), 573–587 (Russian)  mathscinet
    [3] Grioli, G., “Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico”, Ann. Mat. Pura Appl. (4), 26:3–4 (1947), 271–281  crossref  mathscinet  zmath
    [4] Grioli, G., “On the General Theory of Asymmetric Gyros”, Kreiselprobleme Gyrodynamics: IUTAM Symp. Celerina, Springer, Berlin, 1963, 26–31  crossref  mathscinet
    [5] Gulyaev, M. P., “On a New Particular Solution of the Equations of Motion of a Heavy Rigid Body Having a Fixed Point”, Vestn. Mosk. Univ., 9:3 (1955), 15–21 (Russian)  mathscinet
    [6] Hussein, A. M., “On the Motion of a Magnetized Rigid Body”, Acta Mech., 228:11 (2017), 4017–4023  crossref  mathscinet  zmath  elib
    [7] Kharlamova, E. I., “On a Particular Solution of the Euler – Poisson Equations”, J. Appl. Math. Mech., 23 (1959), 975–988  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 23 (1959), 681–690 (Russian)  zmath
    [8] Kharlamova, E. I., “A Particular Case of the Integrability of the Euler – Poisson Equations”, Soviet Phys. Dokl., 4 (1959), 313–315  mathscinet  zmath  adsnasa; Dokl. AN SSSR, 125:5 (1959), 996–997 (Russian)  zmath
    [9] Kharlamova, E. I., “On a Motion of a Rigid Body Having a Fixed Point”, Mekh. Tverd. Tela, 2 (1970), 35–37 (Russian)  zmath
    [10] Khlystunova, N. V., “Grioli-Type Precession of a Heavy Rigid Body in a Liquid”, J. Appl. Math. Mech., 64:4 (2000), 527–530  crossref  zmath; Prikl. Mat. Mekh., 64:4 (2000), 551–554 (Russian)  zmath
    [11] Leimanis, E., The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer Tracts in Natural Philosophy, 7, Springer, Berlin, 1965, 356 pp.  crossref
    [12] Routh, E. J., “On a Theorem of Jacobi in Dynamics”, Quart. J. Pure Appl. Math., 23 (1889), 34–45
    [13] Rubanovskii, V. N., “Some Possible Motions of a Heavy Solid in a Fluid”, J. Appl. Math. Mech., 32:4 (1968), 794–800  crossref  mathscinet; Prikl. Mat. Mekh., 32:4 (1968), 763–768 (Russian)
    [14] Rubanovskii, V. N., “On a New Particular Solution of a Heavy Solid in a Fluid”, J. Appl. Math. Mech., 49:2 (1985), 160–165  crossref; Prikl. Mat. Mekh., 49:2 (1985), 212–219 (Russian)
    [15] Verkhovod, Ye. V. and Gorr, G. V., “New Cases of Isoconic Motions in the Generalized Problem of the Dynamics of a Rigid Body with a Fixed Point”, J. Appl. Math. Mech., 57:5 (1993), 783–792  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 57:5 (1993), 25–34 (Russian)  mathscinet  zmath
    [16] Yehia, H. M., “On the Motion of a Rigid Body Acted upon by Potential and Gyroscopic Forces: 2. A New Form of the Equations of Motion of a Multiconnected Rigid Body in an Ideal Incompressible Fluid”, J. Mec. Théor. Appl., 5:5 (1986), 755–762  mathscinet  zmath
    [17] Yehia, H. M., “New Generalizations of the Integrable Problems in Rigid Body Dynamics”, J. Phys. A, 30:20 (1997), 7269–7275  crossref  mathscinet  zmath  adsnasa
    [18] Yehia, H. M., “New Generalizations of All the Known Integrable Problems in Rigid Body Dynamics”, J. Phys. A, 32:43 (1999), 7565–7580  crossref  mathscinet  zmath  adsnasa
    [19] Yehia, H. M., “On the Regular Precession of an Asymmetric Rigid Body Acted upon by Uniform Gravity and Magnetic Fields”, EJBAS, 2:3 (2015), 200–205
    [20] Yehia, H. M., “Regular Precession of a Rigid Body (Gyrostat) Acted upon by an Irreducible Combination of Three Classical Fields”, J. Egypt. Math. Soc., 25:2 (2017), 216–219  crossref  mathscinet  zmath
    [21] Zyza, A. V., “Computer Studies of Polynomial Solutions for Gyrostat Dynamics”, Comput. Res. Model., 10:1 (2018), 7–25 (Russian)  crossref

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License