Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges

    2019, Vol. 15, no. 4, pp.  543-550

    Author(s): Kuzenov V. V., Ryzhkov S. V.

    A statement of the problem is presented and numerical modeling of plasma-gas-dynamic processes in the capillary discharge plume is performed. In the developed model, plasma dynamic processes in a capillary discharge are determined by the intensity, duration of plasma formation processes in the capillary discharge channel, and thermodynamic parameters in the surrounding gaseous medium. The spatial distribution of temperature, density and pressure, radial and longitudinal velocities of pulsed jets of several capillary discharge channels is presented.
    Keywords: capillary discharge, numerical method, plasma dynamics
    Citation: Kuzenov V. V., Ryzhkov S. V., Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  543-550

    Download File
    PDF, 476 Kb


    [1] Pashchina, A. S., Efimov, A. V., Chinnov, V. F. and Ageev, A. G., “Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge”, Plasma Phys. Rep., 43 (2017), 796–800  crossref  adsnasa  elib
    [2] Poniaev, S. A., Reznikov, B. I., Kurakin, R. O., Popov, P. A., Sedov, A. I., Shustrov, Y. A. and Zhukov, B. G., “Prospects of use of electromagnetic railgun as plasma thruster for spacecrafts”, Acta Astronautica, 150 (2018), 92–96  crossref  adsnasa
    [3] Kuzenov, V. V., “The usage of regular development of mathematical model of processes in the torch of the capillary category”, Physical and chemical kinetics in gas dynamics, 11 (2011) (Russian)
    [4] Kuzenov, V. V. and Ryzhkov, S. V., “Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure”, Phys. Plasmas, 26 (2019), 092704  crossref  adsnasa
    [5] Pinchukov, V. I., “Numerical Simulation of Unsteady Flows with Transient Regimes”, Comput. Math. Math. Phys., 49:10 (2009), 1765–1773  mathnet  crossref  mathscinet  zmath  elib; Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1844–1852 (Russian)  mathscinet  zmath
    [6] Xu, Zh. and Shu, Ch.-W., “Anti-Diffusive Finite Difference WENO Methods for Shallow Water with Transport of Pollutant”, J. Comput. Math., 24:3 (2006), 239–251  mathscinet  zmath
    [7] Vorozhtsov, E. V., “Application of Lagrange – Burman Expansions for Numerical Integration of Inviscid Gas Equations”, Vychisl. Metody Programm., 12 (2011), 348–361 (Russian)  mathnet
    [8] Ovsyannikov, L. V., Lectures on the Basics of Gas Dynamics, Nauka, Moscow, 1981, 336 pp. (Russian)  mathscinet
    [9] Kuzenov, V. V. and Ryzhkov, S. V., “Approximate Method for Calculating Convective Heat Flux on the Surface of Bodies of Simple Geometric Shapes”, J. Phys. Conf. Ser., 815:1 (2017), 012024, 8 pp.  crossref  elib
    [10] Zarubin, V. S., Kuvyrkin, G. N., and Savel'eva, I. Y., “Radiative-Conductive Heat Transfer in a Spherical Cavity”, High Temp., 53:2 (2015), 234–239  mathnet  crossref  elib; Teplofiz. Vys. Temp., 53:2 (2015), 243–249 (Russian)
    [11] Kuzenov, V. V., Ryzhkov, S. V. and Frolko, P. A., “Numerical simulation of the coaxial magneto-plasma accelerator and non-axisymmetric radio frequency discharge”, J. Phys.: Conf. Ser., 830 (2017), 012049  crossref
    [12] Chirkov, A. Yu., Ryzhkov, S. V., Bagryansky P. A., and Anikeev, A. V., “Plasma kinetics models for fusion systems based on the axially-symmetric mirror devices”, Fusion Sci. Technol., 59 (1T) (2011), 39–42  crossref  elib
    [13] Varaksin, A. Yu., “Air Tornado-Like Vortices: Mathematical Modeling”, High Temp., 55:2 (2017), 286–309  mathnet  crossref  elib; Teplofiz. Vys. Temp., 55:2 (2017), 291–316 (Russian)
    [14] Kuzenov, V. V. and Ryzhkov, S. V., “Radiation-Hydrodynamic Modeling of the Contact Boundary of the Plasma Target Placed in an External Magnetic Field”, Prikl. Fiz., 2014, no. 3, 26–30 (Russian)
    [15] Ryzhkov, S. V. and Kuzenov, V. V., “Analysis of the ideal gas flow over body of basic geometrical shape”, Int. J. Heat Mass Transf., 132 (2019), 587–592  crossref
    [16] Romadanov, I., Smolyakov, A., Raitses, Y., and et al., “Structure of nonlocal gradient-drift instabilities in Hall E$\times$B discharges”, Physics of Plasmas, 23 (2016), 122111  crossref  adsnasa
    [17] Ryzhkov, S. V. and Kuzenov, V. V., “New Realization Method for Calculating Convective Heat Transfer near the Hypersonic Aircraft Surface”, Z. Angew. Math. Phys., 70:2 (2019), 46, 9 pp.  crossref  mathscinet  zmath

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License