Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite
2019, Vol. 15, no. 4, pp. 593-609
Author(s): Sukhov E. A.
This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License
Author(s): Sukhov E. A.
We deal with motions of a dynamically symmetric rigid-body satellite about its center of mass in a central Newtonian gravitational field. In this case the equations of motion possess particular solutions representing the so-called regular precessions: cylindrical, conical and hyperboloidal precession. If a regular precession is stable there exist two types of periodic motions in its neighborhood: short-periodic motions with a period close to $2\pi / \omega_2$ and long-periodic motions with a~period close to $2 \pi / \omega_1$ where $\omega_2$ and $\omega_1$ are the frequencies of the linearized system ($\omega_2 > \omega_1$).
In this work we obtain analytically and numerically families of short-periodic motions arising from regular precessions of a symmetric satellite in a nonresonant case and long-periodic motions arising from hyperboloidal precession in cases of third- and fourth-order resonances. We investigate the bifurcation problem for these families of periodic motions and present the results in the form of bifurcation diagrams and Poincaré maps.
In this work we obtain analytically and numerically families of short-periodic motions arising from regular precessions of a symmetric satellite in a nonresonant case and long-periodic motions arising from hyperboloidal precession in cases of third- and fourth-order resonances. We investigate the bifurcation problem for these families of periodic motions and present the results in the form of bifurcation diagrams and Poincaré maps.
Download File PDF, 2.03 Mb |
This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License