On Nonlinear Oscillations of a Time-Periodic Hamiltonian System at a 2:1:1 Resonance
Received 03 June 2022; accepted 19 October 2022; published 14 November 2022
2022, Vol. 18, no. 4, pp. 481-512
Author(s): Kholostova O. V.
We consider the motions of a near-autonomous Hamiltonian system $2\pi$-periodic in time,
with two degrees of freedom, in a neighborhood of a trivial equilibrium. A multiple parametric
resonance is assumed to occur for a certain set of system parameters in the autonomous case,
for which the frequencies of small linear oscillations are equal to two and one, and the resonant
point of the parameter space belongs to the region of sufficient stability conditions. Under certain
restrictions on the structure of the Hamiltonian of perturbed motion, nonlinear oscillations of
the system in the vicinity of the equilibrium are studied for parameter values from a small
neighborhood of the resonant point. Analytical boundaries of parametric resonance regions are
obtained, which arise in the presence of secondary resonances in the transformed linear system
(the cases of zero frequency and equal frequencies). The general case, for which the parameter
values do not belong to the parametric resonance regions and their small neighborhoods, and
both cases of secondary resonances are considered. The question of the existence of resonant
periodic motions of the system is solved, and their linear stability is studied. Two- and threefrequency
conditionally periodic motions are described. As an application, nonlinear resonant
oscillations of a dynamically symmetric satellite (rigid body) relative to the center of mass in
the vicinity of its cylindrical precession in a weakly elliptical orbit are investigated.
Download File PDF, 491.36 Kb |

This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License