Vibrational Stability of Periodic Solutions of the Liouville Equations

    Received 12 September 2019; accepted 16 September 2019

    2019, Vol. 15, no. 3, pp.  351-363

    Author(s): Vetchanin E. V., Mikishanina E. A.

    The dynamics of a body with a fixed point, variable moments of inertia and internal rotors are considered. A stability analysis of permanent rotations and periodic solutions of the system is carried out. In some simplest cases the stability analysis is reduced to investigating the stability of the zero solution of Hill’s equation. It is shown that by periodically changing the moments of inertia it is possible to stabilize unstable permanent rotations of the system. In addition, stable dynamical regimes can lose stability due to a parametric resonance. It is shown that, as the oscillation frequency of the moments of inertia increases, the dynamics of the system becomes close to an integrable one.
    Keywords: Liouville equations, Euler –Poisson equations, Hill’s equation, Mathieu equation, parametric resonance, vibrostabilization, Euler – Poinsot case, Joukowski –Volterra case
    Citation: Vetchanin E. V., Mikishanina E. A., Vibrational Stability of Periodic Solutions of the Liouville Equations, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  351-363
    DOI:10.20537/nd190312


    Download File
    PDF, 775.13 Kb

    References

    [1] Arnold, V. I., Ordinary Differential Equations, Springer, Berlin, 2006, ii+334 pp.  mathscinet
    [2] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass”, Nonlinear Dyn., 95:1 (2019), 699–714  crossref
    [3] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “Chaplygin Sleigh with Periodically Oscillating Internal Mass”, Europhys. Lett., 119:6 (2017), 60008, 7 pp.  crossref  mathscinet  adsnasa
    [4] Bizyaev, I. A., Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems”, Nonlinearity, 32:9 (2019), 3209–3233  crossref  mathscinet  zmath  adsnasa
    [5] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “Exotic Dynamics of Nonholonomic Roller Racer with Periodic Control”, Regul. Chaotic Dyn., 23:7–8 (2018), 983–994  mathnet  crossref  mathscinet  zmath  adsnasa
    [6] Bolsinov, A. V. and Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman & Hall/CRC, Boca Raton, Fla., 2004, xvi+730 pp.  mathscinet  zmath
    [7] Borisov, A. V., “On the Liouville Problem”, Numerical Modelling in the Problems of Mechanics, Mosk. Gos. Univ., Moscow, 1991, 110–118 (Russian)  mathscinet
    [8] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Chaos in a Restricted Problem of Rotation of a Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 13:3 (2008), 221–233  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [9] Borisov, A. V., Kilin, A. A., and Pivovarova, E. N., “Speedup of the Chaplygin Top by Means of Rotors”, Dokl. Phys., 64:3 (2019), 120–124  mathnet  crossref  adsnasa; Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian)
    [10] Borisov, A. V. and Kuznetsov, S. P., “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7–8 (2018), 803–820  mathnet  crossref  mathscinet  zmath  adsnasa
    [11] Borisov, A. V. and Kuznetsov, S. P., “Regular and Chaotic Motions of Chaplygin Sleigh under Periodic Pulsed Torque Impacts”, Regul. Chaotic Dyn., 21:7–8 (2016), 792–803  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [12] Borisov, A. V. and Mamaev, I. S., “Adiabatic Chaos in Rigid Body Dynamics”, Regul. Chaotic Dyn., 2:2 (1997), 65–78 (Russian)  mathnet  mathscinet  zmath
    [13] Borisov, A. V. and Mamaev, I. S., “Euler – Poisson Equations and Integrable Cases”, Regul. Chaotic Dyn., 6:3 (2001), 253–276  mathnet  crossref  mathscinet  zmath  adsnasa
    [14] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R&C Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian)  mathscinet
    [15] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Self-Propulsion of a Smooth Body in a Viscous Fluid under Periodic Oscillations of a Rotor and Circulation”, Regul. Chaotic Dyn., 23:7–8 (2018), 850–874  mathnet  crossref  mathscinet  zmath  adsnasa
    [16] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet  zmath  adsnasa
    [17] Borisov, A. V. and Simakov, N. N., “A Computer “Proof” of Non-Integrability of Euler – Poisson Equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 1998, no. 1, 67–72 (Russian)
    [18] Butikov, E. I., “Stabilization of an Inverted Pendulum (60 Years of Kapitza Pendulum)”, Komput. Instr. v Obrazov., 2010, no. 5, 39–51 (Russian)
    [19] Doroshin, A. V., “Analysis of Attitude Motion Evolutions of Variable Mass Gyrostats and Coaxial Rigid Bodies System”, Internat. J. Non-Linear Mech., 45:2 (2010), 193–205  crossref  adsnasa  elib
    [20] Doroshin, A. V., Regular and Chaotic Dynamics of Satellite Gyrostats under Small Perturbations, Doctoral Dissertation, Samara Natl. Res. Univ., 2019, 224 pp.
    [21] Kharlamov, M. P., Topological Analysis of Integrable Problems of Rigid Body Dynamics, Leningr. Gos. Univ., Leningrad, 1988, 197 pp. (Russian)  mathscinet
    [22] Kilin, A. A. and Pivovarova, E. N., “Chaplygin Top with a Periodic Gyrostatic Moment”, Rus. J. Math. Phys., 25:4 (2018), 509–524  crossref  mathscinet  zmath
    [23] Iñarrea, M. and Lanchares, V., “Chaos in the Reorientation Process of a Dual-Spin Spacecraft with Time-Dependent Moments of Inertia”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:5 (2000), 997–1018  crossref  mathscinet
    [24] Iñarrea, M., Lanchares, V., Rothos, V. M., and Salas, J. P., “Chaotic Rotations of an Asymmetric Body with Time-Dependent Moments of Inertia and Viscous Drag”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:2 (2003), 393–409  crossref  mathscinet
    [25] Leonard, N. E., “Periodic Forcing, Dynamics and Control of Underactuated Spacecraft and Underwater Vehicles”, Proc. of the 34th IEEE Conf. on Decision and Control (New Orleans, La., Dec 1995), 3980–3985
    [26] Mamaev, I. S. and Vetchanin, E. V., “The Self-Propulsion of a Foil with a Sharp Edge in a Viscous Fluid under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7–8 (2018), 875–886  mathnet  crossref  mathscinet  zmath  adsnasa
    [27] Tallapragada, P., “A Swimming Robot with an Internal Rotor As a Nonholonomic System”, American Control Conference (IEEE), 2015, 657-662
    [28] Yakubovich, V. A. and Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients: In 2 Vols., Wiley, New York, 1975  mathscinet



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License