Evgeniy Kurenkov

    ul. Bolshaya Pecherskaya 25/12, Nizhnii Novgorod, 603155, Russia
    National Research University Higher School of Economics

    Publications:

    Grines V. Z., Kurenkov E. D.
    On hyperbolic attractors and repellers of endomorphisms
    2017, Vol. 13, No. 4, pp.  557–571
    Abstract
    It is well known that the topological classification of dynamical systems with hyperbolic dynamics is significantly defined by dynamics on a nonwandering set. F. Przytycki generalized axiom $A$ for smooth endomorphisms that was previously introduced by S. Smale for diffeomorphisms, and proved the spectral decomposition theorem which claims that the nonwandering set of an $A$-endomorphism is a union of a finite number of basic sets.
    In the present paper the criterion for a basic set of an $A$-endomorphism to be an attractor is given. Moreover, dynamics on basic sets of codimension one is studied. It is shown that if an attractor is a topological submanifold of codimension one of type $(n − 1, 1)$, then it is smoothly embedded in the ambient manifold, and the restriction of the endomorphism to this basic set is an expanding endomorphism. If a basic set of type $(n, 0)$ is a topological submanifold of codimension one, then it is a repeller, and the restriction of the endomorphism to this basic set is also an expanding endomorphism.
    Keywords: endomorphism, axiom $A$, basic set, attractor, repeller
    Citation: Grines V. Z., Kurenkov E. D.,  On hyperbolic attractors and repellers of endomorphisms, Rus. J. Nonlin. Dyn., 2017, Vol. 13, No. 4, pp.  557–571
    DOI:10.20537/nd1704008

    Back to the list