Select language: En
Impact Factor

    Evgeniy Zhuzhoma

    ul. Bolshaya Pecherskaya 25/12, Nizhni Novgorod, 603005, Russia
    National research University “Higher school of Economics”


    Zhuzhoma E. V., Medvedev V. S., Isaenkova N. V.
    In this paper, using methods of Morse – Smale dynamical systems, we consider the topological structure of the magnetic field of regions of the photosphere for a point-charge model. For an arbitrary number of charges (regardless of their location), without assuming a potentiality of the field $\boldsymbol{\vec B}$ (and hence without applying specific formulas), we give estimates that connect the numbers of charges of a certain type with the numbers of null-points. For the boundary estimates, we describe the topological structure of the magnetic field. We present a bifurcation of the birth of a large number of separators.
    Keywords: dynamical Morse–Smale system, null-points, separator
    Citation: Zhuzhoma E. V., Medvedev V. S., Isaenkova N. V.,  On the topological structure of the magnetic field of regions of the photosphere, Rus. J. Nonlin. Dyn., 2017, Vol. 13, No. 3, pp.  399-412
    Grines V. Z., Gurevich E. Y., Zhuzhoma E. V., Zinina S. K.
    We obtain properties of three-dimensional phase space and dynamics of Morse–Smale diffeomorphism that led to existence of at least one heteroclinical curve in non-wandering set of the diffeomorphism. We apply this result to solve a problem of existence of separators in magnetic field of plasma.
    Keywords: Morse – Smale cascades, heteroclinic curves, mapping torus, locally trivial bundle, separators of magnetic field
    Citation: Grines V. Z., Gurevich E. Y., Zhuzhoma E. V., Zinina S. K.,  Heteroclinic curves of Morse – Smale cascades and separators in magnetic field of plasma, Rus. J. Nonlin. Dyn., 2014, Vol. 10, No. 4, pp.  427-438

    Back to the list