Impact Factor

    T. Mitryakova

    23, Gagarina av., Nizhny Novgorod, 603950 Russia
    Nizhny Novgorod State University


    Mitryakova T. M., Pochinka O. V.
    In this paper diffeomorphisms on orientable surfaces are considered, whose non-wandering set consists of a finite number of hyperbolic fixed points and the wandering set contains a finite number of heteroclinic orbits of transversal and non-transversal intersections. We investigate substantial class of diffeomorphisms for which it is found complete topological invariant — a scheme consisting of a set of geometrical objects equipped by numerical parametres (moduli of topological conjugacy).
    Keywords: orbits of heteroclinic tangency, one-sided tangency, topological conjugacy, moduli of topological conjugacy
    Citation: Mitryakova T. M., Pochinka O. V.,  To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 1, pp.  91-105

    Back to the list