Выберите язык: Ru / En
0
2013
Impact Factor

    Александров Е. Б.

    141221, Россия, Московская область, Пушкинский район, пос. Черкизово, ул. Главная, д. 99
    aleksandroveb@gmail.com
    Российский государственный университет туризма и сервиса

    Публикации:

    Косенко И., Александров Е. Б.
    Подробнее
    В рамках контактной задачи Герца строится приближенная модель вычисления результирующего мотора (винта) касательных в контакте сил сухого трения. Винт состоит из суммарной силы трения и момента (пары сил) трения верчения. Рассматриваемый подход естественным образом развивает построенную ранее компьютерную модель герцевого упругого контакта. Силы сухого трения и момент этих сил интегрируются по эллиптическому пятну контакта. В общем случае аналитическое вычисление упомянутых интегралов приводит к громоздким выражениям, составленным из десятков слагаемых, являющихся рациональными функциями, зависящими, в свою очередь, от полных эллиптических интегралов с модулем — эксцентриситетом контактного пятна. Для реализации достаточно быстрой компьютерной модели касательных сил проводится приближенное построение в направлении, предложенном еще Контенсу. Представляемая здесь модель является естественным развитием упрощенной модели Контенсу в следующих направлениях: а) модель является анизотропной — суммарные силы трения вдоль главных осей контактного эллипса в общем случае различны; б) для поступательных и почти поступательных относительных движений в области контакта используется регуляризованный кулоновский закон трения; в) построена также приближенная модель момента трения верчения. Для верификации модели используются результаты, полученные ранее несколькими авторами. В качестве тестового динамического примера используется модель волчка тип-топ. Оказалось, что процесс «переворота» волчка на сферу меньшего радиуса («голову»), численно смоделированный при помощи подхода, основанного на применении техники многозначных отображений, практически совпадает с численной верификацией представляемой здесь модели. Динамическая модель шарикоподшипника используется для детального сравнительного тестирования различных подходов к вычислительной реализации касательных сил. Объекты модели упругих контактов между шариками подшипника и его внутренним и внешним кольцами, основанные на законе Кулона касательных сил точечного контакта, были заменены с учетом описываемого здесь модифицированного подхода Контенсу. Оказывается, упрощенные формулы подхода Контенсу обеспечивают скорость моделирования даже большую, чем в модели точечного контакта.
    Ключевые слова: контактная модель Герца, модель Контенсу–Эрисмана, упрощенная модель Контенсу, модель В.Г. Вильке, волчок тип-топ, модель шарикоподшипника
    Цитирование: Косенко И., Александров Е. Б.,  Реализация модели Контенсу–Эрисмана касательных сил в контактной задаче Герца, Нелинейная динамика, 2009, т. 5, № 4, с.  499-517
    DOI:10.20537/nd0904004

    Вернуться к списку