0
2013
Impact Factor

    Iso-energetic manifolds and motion possibility regions of rigid body in double force field

    2005, Vol. 1, No. 1, pp.  23-31

    Author(s): Zotev D. B., Kharlamov M. P.

    The motion of a rigid body about a fixed point in a double constant force field is governed by a Hamiltonian system with three degrees of freedom. We consider the general case when there are no one-dimensional symmetry groups. We point out the critical points of the Hamilton function and corresponding critical values of energy. Using the Morse theory, we have found the smooth type of non-degenerate five-dimensional iso-energetic levels and find their projections onto the configuration space, diffeomorphic to a three-dimensional projective space. The analogs of classical motion possibility regions, the projections of iso-energetic manifolds onto one of the Poisson spheres, are studied.
    Keywords: rigid body, double constant force fields, iso-energetic manifolds, Poisson spheres
    Citation: Zotev D. B., Kharlamov M. P., Iso-energetic manifolds and motion possibility regions of rigid body in double force field, Rus. J. Nonlin. Dyn., 2005, Vol. 1, No. 1, pp.  23-31
    DOI:10.20537/nd0501002


    Download File
    PDF, 155.15 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License