0
2013
Impact Factor

    Falling motion of a circular cylinder interacting dynamically with a point vortex


    2012, Vol. 8, No. 3, pp.  617-628

    Author(s): Sokolov S. V., Ramodanov S. M.

    We consider a system which consists of a heavy circular cylinder and a point vortex in an unbounded volume of ideal liquid. The liquid is assumed to be irrotational and at rest at infinity. The circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit an evident integral of motion — the horizontal component of the momentum. Using the integral we reduce the order and thereby obtain a system with two degrees of freedom. Most remarkable types of partial solutions of the system are presented and stability of equilibrium solutions is investigated.
    Keywords: point vortices, Hamiltonian systems, reduction, stability of equilibrium solutions
    Citation: Sokolov S. V., Ramodanov S. M., Falling motion of a circular cylinder interacting dynamically with a point vortex, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 3, pp.  617-628
    DOI:10.20537/nd1203014


    Download File
    PDF, 467.19 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License