An investigation of the characteristics of motion of a rigid body with variable internal mass distribution in a viscous fluid is carried out on the basis of a joint numerical solution of the Navier–Stokes equations and equations of motion. A non-stationary three-dimensional solution to the problem is found. The motion of a sphere and a drop-shaped body in a viscous fluid, which is caused by the motion of internal material points, in a gravitational field is explored. The possibility of motion of a body in an arbitrary given direction is shown.	
		
	
	
												
												Keywords:
												
												finite-volume numerical method, Navier-Stokes equations, variable internal mass distribution, motion control							
						
						
							
	
	Citation:
	
	Vetchanin E. V., Mamaev I. S., Tenenev V. A., The motion of a body with variable mass geometry in a viscous fluid, Rus. J. Nonlin. Dyn.,	
	2012, 	Vol. 8, No. 4,
	 pp.  815-836
	
	
	
	
	
		
		DOI:10.20537/nd1204010