0
2013
Impact Factor

    On a bifurcation scenario of a birth of attractor of Smale–Williams type

    2013, Vol. 9, No. 2, pp.  267-294

    Author(s): Isaeva O. B., Kuznetsov S. P., Sataev I. R., Pikovsky A.

    We describe one possible scenario of destruction or of a birth of the hyperbolic attractors considering the Smale—Williams solenoid as an example. The content of the transition observed under variation of the control parameter is the pairwise merge of the orbits belonging to the attractor and to the unstable invariant set on the border of the basin of attraction, in the course of the set of bifurcations of the saddle-node type. The transition is not a single event, but occupies a finite interval on the control parameter axis. In an extended space of the state variables and the control parameter this scenario can be regarded as a mutual transformation of the stable and unstable solenoids one to each other. Several model systems are discussed manifesting this scenario e.g. the specially designed iterative maps and the physically realizable system of coupled alternately activated non-autonomous van der Pol oscillators. Detailed studies of inherent features and of the related statistical and scaling properties of the scenario are provided.
    Keywords: strange attractor, chaos, bifurcation, self-sustained oscillator, hyperbolic chaos
    Citation: Isaeva O. B., Kuznetsov S. P., Sataev I. R., Pikovsky A., On a bifurcation scenario of a birth of attractor of Smale–Williams type, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 2, pp.  267-294
    DOI:10.20537/nd1302006


    Download File
    PDF, 2.91 Mb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License