Multistability in dynamic models of migration coupled populations with an age structure


    2014, Vol. 10, No. 4, pp.  407-425

    Author(s): Kulakov M. P., Neverova G. P., Frisman E. Y.

    This article researches model of two coupled an age structured populations. The model consists of two identical two-dimensional maps demonstrating the Neimark – Sacker and period-doubling bifurcations. The “bistability” of dynamic modes is found which is expressed in a co-existence the nontrivial fixed point and periodic points (stable 3-cycle). The mechanism of loss stability and formation of complex hierarchy for multistable states are investigated.
    Keywords: metapopulation, multistability, maps, synchronization, basin of attraction
    Citation: Kulakov M. P., Neverova G. P., Frisman E. Y., Multistability in dynamic models of migration coupled populations with an age structure, Rus. J. Nonlin. Dyn., 2014, Vol. 10, No. 4, pp.  407-425
    DOI:10.20537/nd1404002


    Download File
    PDF, 980.67 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License