0
2013
Impact Factor

    On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point

    2017, Vol. 13, No. 1, pp.  81-104

    Author(s): Belichenko M. V., Kholostova O. V.

    We consider the motion of Lagrange’s top with a suspension point performing the specified highfrequency periodic motion with small amplitude in three-dimensional space. The approximate autonomous system of equations of motion written in the form of canonical Hamiltonian equations is investigated. The problem of the existence and number of stationary rotations of the top about its dynamical symmetry axis is solved. The study of stability of the corresponding equilibrium positions of the reduced two-degree-of-freedom system for fixed values of the cyclic integral constant depending on the angular velocity of rotation is carried out. For suspension points’ motions allowing for stationary rotations about the vertical, a detailed linear and nonlinear stability analysis of these rotations and rotations about inclined axes is carried out. For a number of other cases of the suspension point motions a linear stability analysis is carried out.
    Keywords: Lagrange’s top, “sleeping” top, high-frequency vibrations, stability
    Citation: Belichenko M. V., Kholostova O. V., On the stability of stationary rotations in the approximate problem of motion of Lagrange’s top with a vibrating suspension point, Rus. J. Nonlin. Dyn., 2017, Vol. 13, No. 1, pp.  81-104
    DOI:10.20537/nd1701006


    Download File
    PDF, 436.39 Kb




    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License