0
2013
Impact Factor

    Modelling of self-oscillations of a controlled pendulum with respect to a friction torque depending on a normal reaction in a joint

    2018, Vol. 14, no. 1, pp.  33-44

    Author(s): Vasiukova O. E., Klimina L. A.

    The paper presents a mathematical model of a controlled pendulum under the assumption that friction in a joint is a sum of Coulomb and viscous friction. Moreover, it is taken into account that the Coulomb friction torque depends on the value of normal reaction force in a joint. The control torque is chosen as a function that depends only on the sign of the angular speed of the pendulum. Via the Pontryagin approach for near-Hamiltonian systems, the program law is constructed for test self-oscillations. Test self-oscillations are to be used for identification of friction coefficients. Bifurcation diagrams are constructed that describe the dependence between amplitudes of self-oscillations and values of the control torque. The proposed approach to the identification of parameters of the friction requires information about amplitudes of test selfoscillations but does not require information about the trajectory of motion as a function of time. Numerical simulation of the motion of the system is carried out. The range of parameter values is described for which the method proposed in the paper is quite accurate.
    Keywords: identification of friction, small parameter, steady motions, controlled dynamic system, bifurcation diagrams
    Citation: Vasiukova O. E., Klimina L. A., Modelling of self-oscillations of a controlled pendulum with respect to a friction torque depending on a normal reaction in a joint, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 1, pp.  33-44
    DOI:10.20537/nd1801003


    Download File
    PDF, 401.62 Kb

    References

    [1] Armstrong-Hélouvry B., Dupont P., De Wit C. C., “A survey of models, analysis tools and compensation methods for the control of machines with friction”, Automatica, 30:7 (1994), 1083–1138  crossref
    [2] Amabili M., “Nonlinear damping in large-amplitude vibrations: modelling and experiments”, Nonlinear Dynam., 2017, 1–14
    [3] Безнос А. В., Гришин А. А., Ленский А. В., Охоцимский Д. Е., Формальский А. М., “Управление при помощи маховика маятником с неподвижной точкой подвеса”, Изв. РАН. Теория и системы управления, 2004, № 1, 27–38; Beznos A. V., Grishin A. A., Lensky A. V., Okhotsimsky D. E., Formal'sky A. M., “A flywheel use-based control for a pendulum with a fixed suspension point”, J. Comput. Syst. Sci. Int., 43:1 (2004), 22–33
    [4] Formalskii A. M., Stabilization and motion control of unstable objects, de Gruyter, Berlin, 2015, 239 pp.
    [5] Iwatani M., Kikuuwe R., “An identification procedure for rate-dependency of friction in robotic joints with limited motion ranges”, Mechatronics, 36 (2016), 36–44  crossref
    [6] Kermani M. R., Patel R. V., Moallem M., “Friction identification and compensation in robotic manipulators”, IEEE Trans. Instrum. Meas., 56:6 (2007), 2346–2353  crossref
    [7] Vakil M., Fotouhi R., Nikiforuk P. N., “Energy-based approach for friction identification of robotic joints”, Mechatronics, 21:3 (2011), 614–624  crossref
    [8] Александров В. В., Лемак С. С., Парусников Н. А., Лекции по механике управляемых систем, Макс Пресс, Москва, 2012, 240 с. [Aleksandrov V. V., Lemak S. S., Parusnikov N. A., Lectures on the mechanics of controlled systems, Max Press, Moscow, 2012 (Russian)]
    [9] Баутин Н. Н., Леонтович Е. А., Методы и приемы качественного исследования динамических систем на плоскости, Наука, Москва, 1990, 486 с. [Bautin N. N., Leontovich E. A., Methods and techniques of the qualitative study of dynamical systems on the plane, Nauka, Moscow, 1990 (Russian)]
    [10] Васюкова О. Э., “О возможности идентификации коэффициентов трения в шарнире управляемого физического маятника по амплитудам установившихся колебаний”, Вестн. МГУ. Сер. 1. Матем. Механ., 2018 (в печати); Vasiukova O. E., “On the possibility of identification of friction coefficients in a hinge of a physical pendulum via analysis of amplitudes of steady oscillations”, Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 2018 (to appear)
    [11] Климина Л. А., Локшин Б. Я., “Об одном конструктивном методе поиска ротационных и автоколебательных режимов в автономных динамических системах”, Нелинейная динамика, 13:1 (2017), 25–40  mathnet [Klimina L. A., Lokshin B. Ya., “On a constructive method of search for rotary and oscillatory modes in autonomous dynamical systems”, Nelin. Dinam., 13:1 (2017), 25–40 (Russian)]



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License