On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies
Received 14 November 2017; accepted 20 December 2017
2018, Vol. 14, no. 1, pp. 45-52
Author(s): Burov A. A., Guerman A., Raspopova E., Nikonov V. I.
It is well known that several small celestial objects are of irregular shape. In particular, there exist asteroids of the so-called “dog-bone” shape. It turns out that approximation of these bodies by dumb-bells, as proposed by V.V. Beletsky, provides an effective tool for analytical investigation of dynamics in vicinities of such bodies. There remains the question of how to divide reasonably a “dogbone” body into two parts using available measurement data.
In this paper we introduce an approach based on the so-called $K$-mean algorithm proposed by the prominent Polish mathematician H. Steinhaus.
Download File PDF, 748.17 Kb |
References |
|
[1] |
Белецкий В. В., “Обобщенная ограниченная круговая задача трех тел как модель динамики двойных астероидов”, Космические исследования, 45:6 (2007), |
[2] |
Белецкий В. В., Пономарева О. Н., “Параметрический анализ устойчивости относительного равновесия в гравитационном поле”, Космические исследования, 28:5 (1990), |
[3] |
Белецкий В. В., Родников А. В., “Об устойчивости треугольных точек либрации в обобщенной ограниченной круговой задаче трех тел”, Космические исследования, 46:1 (2008), |
[4] |
Буров А. А., Герман А. Д., Косенко И. И., Никонов В. И., “О притяжении гантелеобразных тел, представленных парой пересекающихся шаров”, Нелинейная динамика, 13:2 (2017), |
[5] | Валле–Пуссен Ш. Ж., Лекции по теоретической механике: В 2 тт., т. 1, ИЛ, Москва, 1948, 339 с.; de La Vallée Poussin Ch.-J., Leçons de mécanique analytique, v. 1, Vecteurs, cinematique, dynamique du point, statique, 2nd ed., UCL, Louvain, 1932 |
[6] |
Дубошин Г. Н., “Об одном частном случае задачи о поступательно-вращательном движении двух тел”, Астрономический журнал, 36:1 (1959), |
[7] |
Карапетян А. В., Сахокиа И. Д., “О бифуркации и устойчивости стационарных движений двух гравитирующих тел”, ПММ, 56:6 (1992), |
[8] |
Родников А. В., “Треугольные точки либрации обобщенной ограниченной круговой задачи трех тел в случае комплексно-сопряженных масс притягивающих центров”, Нелинейная динамика, 10:2 (2014), |
[9] |
Bartczak P., Breiter S., “Double material segment as the model of irregular bodies”, Celestial Mech. Dynam. Astronom., 86:2 (2003), |
[10] |
Bartczak P., Breiter S., Jusiel P., “Ellipsoids, material points and material segments”, Celestial Mech. Dynam. Astronom., 96:1 (2006), |
[11] |
Benner L. A. M., Hudson R. S., Ostro S. J., Rosema K. D., Giorgini J. D., Yeomans D. K., Jurgens R. F., Mitchell D. L., Winkler R., Rose R., Slade M. A., Thomas M. L., Pravec P., “Radar observations of asteroid |
[12] |
Chanut T. G. G., Aljbaae S., Carruba V., “Mascon gravitation model using a shaped polyhedral source”, Mon. Not. R. Astron. Soc., 450:4 (2015), |
[13] | Herrera-Succarat E., The full problem of two and three bodies: Application to asteroids and binaries, Univ. of Surrey, Guildford, 2012, 172 pp. |
[14] |
Herrera-Succarat E., Palmer P. L., Roberts M., “Modeling the gravitational potential of a nonspherical asteroid”, J. Guid. Control Dyn., 36:3 (2013), |
[15] | Hitt D. L., Pearl J. M., “Asteroid gravitational models using mascons derived from polyhedral sources”, AIAA/AAS Astrodynamics Specialist Conference (Long Beach, Calif., Sept 2016), 12 pp. |
[16] |
Hudson R. S., “Three-dimensional reconstruction of asteroids from radar observations”, Remote Sensing Rev., 8 (1993), |
[17] |
Kholshevnikov K. V., Shaidulin V. Sh., “Existence of a class of irregular bodies with a higher convergence rate of Laplace series for the gravitational potential”, Celestial Mech. Dynam. Astronom, 122:4 (2015), |
[18] | NEAR collected shape and gravity models, PDS Asteroid/Dust Archive {\tt https://sbn.psi.edu/pds/resource/nearmod.html} |
[19] |
Park R. S., Werner R. A., Bhaskaran S., “Estimating small-body gravity field from shape model and navigation data”, J. Guid. Control Dyn., 33:1 (2010), |
[20] |
Pucacco J., Boccaletti D., Belmonte C., “On the orbit structure of the logarithmic potential”, Astrophys. J., 669:1 (2007), |
[21] |
Riaguas A., Elipe A., Lara M., “Periodic orbits around a massive straight segment”, Celestial Mech. Dynam. Astronom., 73:1–4 (1999), |
[22] |
Riaguas A., Elipe A., López-Moratalla T., “Non-linear stability of the equilibria in the gravity field of a finite straight segment”, Celestial Mech. Dynam. Astronom., 81:3 (2001), |
[23] | Small body radar shape models, PDS Asteroid/Dust Archive {\tt https://sbn.psi.edu/pds/resource/rshape.html} |
[24] |
Steinhaus H., “Sur la division des corps matériels en parties”, Bull. Acad. Polon. Sci. Cl. III, 4 (1956), |
[25] |
Takahashi Yu., Scheeres D. J., Werner R. A., “Surface gravity fields for asteroids and comets”, J. Guid. Control Dyn., 36:2 (2013), |
[26] |
Takahashi Yu., Scheeres D. J., “Small body surface gravity fields via spherical harmonic expansions”, Celestial Mech. Dynam. Astronom., 119:2 (2014), |
[27] |
Turconi A., Palmer Ph., Roberts M., “Efficient modelling of small bodies gravitational potential for autonomous proximity operations”, Astrodynamics Network AstroNet-II, Astrophys. Space Sci. Proc., 44, eds. G. Gómez, J. J. Masdemont, Springer, Cham, 2016, |
[28] |
Werner R. A., “Spherical harmonic coefficients for the potential of a constant-density polyhedron”, Comput. Geosci., 23:10 (1997), |
[29] |
Werner R. A., “The gravitational potential of a homogeneous polyhedron or don't cut corners”, Celestial Mech. Dynam. Astronom., 59:3 (1994), |
[30] |
Werner R. A., Scheeres D. J., “Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia”, Celestial Mech. Dynam. Astronom., 65:3 (1996), |
This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License