Уважаемые авторы и читатели журнала Нелинейная динамика!

Обращаем Ваше внимание, что в целях расширения читательской аудитории и продвижения журнала в международное сообщество, начиная со 2 номера 2018 года журнал будет публиковать статьи только на английском языке. Все принятые к печати на настоящий момент (19.12.2017) рукописи будут опубликованы в 1 номере 2018 года. Статьи, находящиеся на рассмотрении, которые будут рекомендованы к публикации, также войдут в 1 номер 2018 года.

Статьи будут приниматься к рассмотрению как на русском, так и на английском (предпочтительнее) языках. При необходимости, редакция журнала будет оказывать содействие авторам в переводе работ на английский язык.

По всем возникающим вопросам Вы можете обращаться по адресу editorial@rcd.ru.

Выберите язык: Ru / En
0
2013
Impact Factor

    Никонов Василий Иванович

    119991, Россия, г. Москва, Ленинские горы, д. 1
    nikon_v@list.ru
    Московский государственный университет им. М.В. Ломоносова

    Публикации:

    Буров А. А., Герман А., Распопова Е., Никонов В.
    Подробнее
    Как известно, многие малые небесные тела имеют неправильную форму, в частности, так называемую форму «собачьей косточки» (dog-bone shape). Для аналитического исследования движения под действием сил притяжения со стороны таких тел естественно основываться на предложенном В.В. Белецким подходе, опирающемся на приближение таких тел гантелями, представляющими собой пару массивных шаров, центры которых удалены друг от друга на некоторое фиксированное расстояние.
    Возникает вопрос: как по имеющимся данным измерений разумно подобрать параметры гантели, в определенном смысле приближающей то или иное небесное тело.
    В настоящей работе предлагается подход, опирающийся на так называемый метод $K$-средних, предложенный выдающимся польским математиком Х. Штейнгаузом.
    Ключевые слова: астероид, представление поверхности тела многогранником, гравитационное поле небесного тела, метод $K$-средних
    Цитирование: Буров А. А., Герман А., Распопова Е., Никонов В.,  О применении $K$-средних для определения распределения масс гантелеобразных небесных тел, Нелинейная динамика, 2018, т. 14, № 1, с.  45-52
    DOI:10.20537/nd1801004
    Буров А. А., Герман А., Косенко И., Никонов В.
    Подробнее
    Рассматривается задача о движении частицы в поле притяжения однородного гантелеобразного тела, составленного из пары пересекающихся шаров, радиусы которых, вообще говоря, различны. Выписывается приближенное значение для ньютоновского потенциала притяжения. В предположении о равномерном вращении гантели изучаются положения относительного равновесия и их свойства.
    Ключевые слова: плоская обобщенная задача двух тел, гравитирующие системы с неравномерным распределением масс, устойчивость установившихся движений, бифуркации установившихся движений
    Цитирование: Буров А. А., Герман А., Косенко И., Никонов В.,  О притяжении гантелеобразных тел, представленных парой пересекающихся шаров, Нелинейная динамика, 2017, т. 13, № 2, с.  243-256
    DOI:10.20537/nd1702007
    Буров А. А., Никонов В.
    Подробнее
    Рассматривается плоская задача о движении правильного треугольника с одинаковыми массами в вершинах и материальной точки под действием сил взаимного притяжения. Изучаются необходимые условия устойчивости «прямых», осевых установившихся конфигураций, для которых материальная точка располагается на одной из осей симметрии треугольника. Обсуждается вопрос о появлении иных, «косых», установившихся конфигураций, появляющихся в связи с изменением при определенных значениях параметров степени неустойчивости некоторых «прямых» установившихся конфигураций.
    Ключевые слова: обобщенная плоская задача двух тел, гравитирующий астероид, гравитирующие системы с нерегулярным распределением масс, устойчивость установившихся движений, гироскопическая стабилизация, бифуркации установившихся движений, бифуркационные диаграммы Пуанкаре
    Цитирование: Буров А. А., Никонов В.,  Об устойчивости и ветвлении стационарных вращений в плоской задаче о движении взаимно гравитирующих треугольника и материальной точки, Нелинейная динамика, 2016, т. 12, № 2, с.  179-196
    DOI:10.20537/nd1602002

    Вернуться к списку