0
2013
Impact Factor

    On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies

    2018, Vol. 14, no. 1, pp.  45-52

    Author(s): Burov A. A., Guerman A., Raspopova E., Nikonov V.

    It is well known that several small celestial objects are of irregular shape. In particular, there exist asteroids of the so-called “dog-bone” shape. It turns out that approximation of these bodies by dumb-bells, as proposed by V.V. Beletsky, provides an effective tool for analytical investigation of dynamics in vicinities of such bodies. There remains the question of how to divide reasonably a “dogbone” body into two parts using available measurement data.
    In this paper we introduce an approach based on the so-called $K$-mean algorithm proposed by the prominent Polish mathematician H. Steinhaus.
    Keywords: $K$-means algorithm, small celestial bodies, mesh representation of an asteroid’s surface
    Citation: Burov A. A., Guerman A., Raspopova E., Nikonov V., On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 1, pp.  45-52
    DOI:10.20537/nd1801004


    Download File
    PDF, 748.17 Kb

    References

    [1] Белецкий В. В., “Обобщенная ограниченная круговая задача трех тел как модель динамики двойных астероидов”, Космические исследования, 45:6 (2007), 435–442; Beletsky V. V., “Generalized restricted circular three-body problem as a model for dynamics of binary asteroids”, Cosmic Research, 45:5 (2007), 408–416  crossref
    [2] Белецкий В. В., Пономарева О. Н., “Параметрический анализ устойчивости относительного равновесия в гравитационном поле”, Космические исследования, 28:5 (1990), 664–675 [Beletskii V. V., Ponomareva O. N., “A parametric analysis of relative equilibrium stability in the gravitational field”, Kosmicheskie Issledovaniya, 28:5 (1990), 664–675 (Russian)]
    [3] Белецкий В. В., Родников А. В., “Об устойчивости треугольных точек либрации в обобщенной ограниченной круговой задаче трех тел”, Космические исследования, 46:1 (2008), 42–50; Beletskii V. V., Rodnikov A. V., “Stability of triangle libration points in generalized restricted circular three-body problem”, Cosmic Research, 46:1 (2008), 40–48  crossref
    [4] Буров А. А., Герман А. Д., Косенко И. И., Никонов В. И., “О притяжении гантелеобразных тел, представленных парой пересекающихся шаров”, Нелинейная динамика, 13:2 (2017), 243–256  mathnet [Burov A. A., Guerman A. D., Kosenko I. I., Nikonov V. I., “On the gravity of dumbbell-like bodies represented by a pair of intersecting balls”, Nelin. Dinam., 13:2 (2017), 243–256 (Russian)]
    [5] Валле–Пуссен Ш. Ж., Лекции по теоретической механике: В 2 тт., т. 1, ИЛ, Москва, 1948, 339 с.; de La Vallée Poussin Ch.-J., Leçons de mécanique analytique, v. 1, Vecteurs, cinematique, dynamique du point, statique, 2nd ed., UCL, Louvain, 1932
    [6] Дубошин Г. Н., “Об одном частном случае задачи о поступательно-вращательном движении двух тел”, Астрономический журнал, 36:1 (1959), 153–163; Duboshin G. N., “On one particular case of the problem of the translational-rotational motion of two bodies”, Sov. Astron., 3:1 (1959), 154–165
    [7] Карапетян А. В., Сахокиа И. Д., “О бифуркации и устойчивости стационарных движений двух гравитирующих тел”, ПММ, 56:6 (1992), 935–938; Karapetyan A. V., Sakhokia I. D., “On bifurcation and stability of steady motions of two gravitating bodies”, J. Appl. Math. Mech., 56:6 (1992), 839–842  crossref
    [8] Родников А. В., “Треугольные точки либрации обобщенной ограниченной круговой задачи трех тел в случае комплексно-сопряженных масс притягивающих центров”, Нелинейная динамика, 10:2 (2014), 213–222  mathnet [Rodnikov A. V., “Triangular libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers”, Nelin. Dinam., 10:2 (2014), 213–222 (Russian)]
    [9] Bartczak P., Breiter S., “Double material segment as the model of irregular bodies”, Celestial Mech. Dynam. Astronom., 86:2 (2003), 131–141  crossref
    [10] Bartczak P., Breiter S., Jusiel P., “Ellipsoids, material points and material segments”, Celestial Mech. Dynam. Astronom., 96:1 (2006), 31–48  crossref
    [11] Benner L. A. M., Hudson R. S., Ostro S. J., Rosema K. D., Giorgini J. D., Yeomans D. K., Jurgens R. F., Mitchell D. L., Winkler R., Rose R., Slade M. A., Thomas M. L., Pravec P., “Radar observations of asteroid 2063 Bacchus”, Icarus, 139:2 (1999), 309–327  crossref
    [12] Chanut T. G. G., Aljbaae S., Carruba V., “Mascon gravitation model using a shaped polyhedral source”, Mon. Not. R. Astron. Soc., 450:4 (2015), 3742–3749  crossref
    [13] Herrera-Succarat E., The full problem of two and three bodies: Application to asteroids and binaries, Univ. of Surrey, Guildford, 2012, 172 pp.
    [14] Herrera-Succarat E., Palmer P. L., Roberts M., “Modeling the gravitational potential of a nonspherical asteroid”, J. Guid. Control Dyn., 36:3 (2013), 790–798  crossref
    [15] Hitt D. L., Pearl J. M., “Asteroid gravitational models using mascons derived from polyhedral sources”, AIAA/AAS Astrodynamics Specialist Conference (Long Beach, Calif., Sept 2016), 12 pp.
    [16] Hudson R. S., “Three-dimensional reconstruction of asteroids from radar observations”, Remote Sensing Rev., 8 (1993), 195–203  crossref
    [17] Kholshevnikov K. V., Shaidulin V. Sh., “Existence of a class of irregular bodies with a higher convergence rate of Laplace series for the gravitational potential”, Celestial Mech. Dynam. Astronom, 122:4 (2015), 391–403  crossref
    [18] NEAR collected shape and gravity models, PDS Asteroid/Dust Archive {\tt https://sbn.psi.edu/pds/resource/nearmod.html}
    [19] Park R. S., Werner R. A., Bhaskaran S., “Estimating small-body gravity field from shape model and navigation data”, J. Guid. Control Dyn., 33:1 (2010), 212–221  crossref
    [20] Pucacco J., Boccaletti D., Belmonte C., “On the orbit structure of the logarithmic potential”, Astrophys. J., 669:1 (2007), 202–217  crossref
    [21] Riaguas A., Elipe A., Lara M., “Periodic orbits around a massive straight segment”, Celestial Mech. Dynam. Astronom., 73:1–4 (1999), 169–178  crossref
    [22] Riaguas A., Elipe A., López-Moratalla T., “Non-linear stability of the equilibria in the gravity field of a finite straight segment”, Celestial Mech. Dynam. Astronom., 81:3 (2001), 235–248  crossref
    [23] Small body radar shape models, PDS Asteroid/Dust Archive {\tt https://sbn.psi.edu/pds/resource/rshape.html}
    [24] Steinhaus H., “Sur la division des corps matériels en parties”, Bull. Acad. Polon. Sci. Cl. III, 4 (1956), 801–804
    [25] Takahashi Yu., Scheeres D. J., Werner R. A., “Surface gravity fields for asteroids and comets”, J. Guid. Control Dyn., 36:2 (2013), 362–374  crossref
    [26] Takahashi Yu., Scheeres D. J., “Small body surface gravity fields via spherical harmonic expansions”, Celestial Mech. Dynam. Astronom., 119:2 (2014), 169–206  crossref
    [27] Turconi A., Palmer Ph., Roberts M., “Efficient modelling of small bodies gravitational potential for autonomous proximity operations”, Astrodynamics Network AstroNet-II, Astrophys. Space Sci. Proc., 44, eds. G. Gómez, J. J. Masdemont, Springer, Cham, 2016, 257–272  crossref
    [28] Werner R. A., “Spherical harmonic coefficients for the potential of a constant-density polyhedron”, Comput. Geosci., 23:10 (1997), 1071–1077  crossref
    [29] Werner R. A., “The gravitational potential of a homogeneous polyhedron or don't cut corners”, Celestial Mech. Dynam. Astronom., 59:3 (1994), 253–278  crossref
    [30] Werner R. A., Scheeres D. J., “Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia”, Celestial Mech. Dynam. Astronom., 65:3 (1996), 313–344



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License