Impact Factor

    Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback

    2018, Vol. 14, no. 2, pp.  155-168

    Author(s): Rozental R. M., Isaeva O. B., Ginzburg N. S., Zotova I. V., Sergeev A. S., Rozhnev A. G.

    Within the framework of the nonstationary model with nonfixed field structure, we investigate the model of a 3-mm band gyroklystron with delayed feedback. It is shown that both chaotic and hyperchaotic generation regimes are possible in this system. The chaotic regime due to a Feigenbaum period-doubling cascade is characterized by one positive Lyapunov exponent. Further transition to hyperchaos is determined by the appearance of another positive exponent in the Lyapunov spectrum. The correlation dimension of the corresponding attractors reaches values of about 3.5.
    Keywords: chaos, hyperchaos, Lyapunov exponents, gyroklystron
    Citation: Rozental R. M., Isaeva O. B., Ginzburg N. S., Zotova I. V., Sergeev A. S., Rozhnev A. G., Characteristics of Chaotic Regimes in a Space-distributed Gyroklystron Model with Delayed Feedback, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 2, pp.  155-168

    Download File
    PDF, 1.45 Mb


    [1] Afanas'eva, V. V. and Lazerson, A. G., “Dynamical Chaos in Two-Cavity Klystron-Type Oscillators with Delayed Feedback”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 3:5 (1995), 88–99 (Russian)
    [2] Anishchenko, V. S., Vadivasova, T. E., and Sosnovtseva, O., “Mechanisms of Ergodic Torus Destruction and Appearance of Strange Nonchaotic Attractors”, Phys. Rev. E, 53:5 (1996), 4451–4456  crossref  mathscinet  adsnasa
    [3] Antakov, I. I., Gachev, I. G., and Zasypkin, E. V., “Experimental Studies of a Gyroklystron Operating in the Field of a Permanent Magnet”, Radiophys. Quantum El., 54:3 (2011), 166–173  crossref  elib; Izv. Vyssh. Uchebn. Zaved. Radiofizika, 54:3 (2011), 185–194 (Russian)
    [4] Atino, A., Bonchomme, G., and Pierre, T., “Ionization Waves: From Stability to Chaos and Turbulence”, Eur. Phys. J. D, 19:1 (2002), 79–87  crossref  adsnasa
    [5] Balyakin, A. A. and Ryskin, N. M., “Peculiarities of Calculation of the Lyapunov Exponents Set in Distributed Self-Oscillated Systems with Delayed Feedback”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 3–21 (Russian)  zmath
    [6] Balyakin, A. A. and Blokhina, E. V., “On the Calculation of the Lyapunov Exponents Set in Distributed Radiophysical Systems”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 16:2 (2008), 87–110 (Russian)  zmath
    [7] Bezruchko, B. P., Bulgakova, L. V., Kuznetsov, S. P., and Trubetskov, D. I., “Stochastic Self-Oscillations and Instability in a Backward Wave Tube”, Radiotekhnika i Elektronika, 28:6 (1983), 1136–1139 (Russian)  adsnasa
    [8] Bezruchko, B. P. and Smirnov, D. A., Extracting Knowledge from Time Series: An Introduction to Nonlinear Empirical Modeling, Springer Series in Synergetics, Springer, Heidelberg, 2010, xxii+405 pp.  crossref  mathscinet  zmath
    [9] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory; P. 2: Numerical Application”, Meccanica, 15 (1980), 9–30  crossref  adsnasa
    [10] Blokhina, E. V., Kuznetsov, S. P., and Rozhnev, A. G., “High-Dimensional Chaos in a Gyrotron”, IEEE Trans. Electron Devices, 54:2 (2007), 188–193  crossref  adsnasa  elib
    [11] Bradley, E. and Kantz, H., “Nonlinear Time-Series Analysis Revisited”, Chaos, 25:9 (2015), 097610, 11
    [12] Brown, R., Bryant, P., and Abarbanel, H. D. I., “Computing the Lyapunov Spectrum of a Dynamical System from an Observed Time Series”, Phys. Rev. A, 43:6 (1991), 2787–2806  crossref  mathscinet  adsnasa
    [13] Dikhtyar, V. B. and Kislov, V. Ya., “Calculations of Self-Oscillators with External Delayed Feedback by Run Time Method”, Radiotekhnika i Elektronika, 22:10 (1977), 2141–2147 (Russian)
    [14] Dmitrieva, T. V., Ryskin, N. M., Titov, V. N., and Shigaev, A. M., “Complex Dynamics of Simple Models of Distributed Electron-Wave Systems”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 7:6 (1999), 66–81 (Russian)
    [15] Eckmann, J.-P. and Ruelle, D., “Ergodic Theory of Chaos and Strange Attractors”, Rev. Modern Phys., 57:3, part 1 (1985), 617–656  crossref  mathscinet  zmath  adsnasa
    [16] Eckmann, J.-P., Kamphorst, S. O., Ruelle, D., and Gilberto, D., “Lyapunov Exponents from a Time Series”, Phys. Rev. A, 34:6 (1986), 4971–4979  crossref  mathscinet  adsnasa
    [17] Emelyanov, V. V., Girevoy, R. A., Yakovlev, A. V., and Ryskin, N. M., “Time-Domain Particle-in-Cell Modeling of Delayed Feedback Klystron Oscillators”, IEEE Trans. Electron Devices, 61:6 (2014), 1842–1847  crossref  adsnasa  elib
    [18] Ergakov, V. S. and Moiseev, M. A., “Two-Cavity Oscillator with Delayed Feedback”, Radiotekhnika i Elektronika, 31:5 (1986), 962–967 (Russian)  adsnasa
    [19] Feudel, U., Kuznetsov, S., and Pikovsky, A., Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 56, World Sci., Hackensack, N.J., 2006, xii+213 pp.  mathscinet
    [20] Ginelli, F., Poggi, P., Turchi, A., Chaté, H., Livi, R., and Politi, A., “Characterizing Dynamics with Covariant Lyapunov Vectors”, Phys. Rev. Lett., 99:13 (2007), 130601, 4 pp.  crossref  adsnasa  elib
    [21] Ginelli, F., Chaté, H., Livi, H., and Politi, A., “Covariant Lyapunov Vectors”, J. Phys. A, 46:25 (2013), 1–25  crossref  mathscinet
    [22] Ginzburg, N. S., Rozental, R. M., Sergeev, A. S., and Zotova, I. V., “Time-Domain Model of Gyroklystrons with Diffraction Power Input and Output”, Phys. Plasmas, 23:3 (2016), 033108, 5 pp.  crossref  adsnasa  elib
    [23] Ginzburg, N. S., Sergeev, A. S., Zotova, I. V., and Zheleznov, I. V., “Time-Domain Theory of Gyrotron Traveling Wave Amplifiers Operating at Grazing Incidence”, Phys. Plasmas, 22:1 (2015), 012113, 4 pp.  crossref  elib
    [24] Ginzburg, N. S., Zavolsky, N. A., and Nusinovich, G. S., “Theory of Non-Stationary Processes in Gyrotrons with Low Q Resonators”, Int. J. Electronics, 61:6 (1986), 881–894  crossref
    [25] Grishin, S. V., Dmitriev, B. S., Zharkov, Yu. D., Skorokhodov, V. N., and Sharaevskii, Yu. P., “Generation of Chaotic Microwave Pulses in a Ring System Based on a Klystron Power Amplifier and a Nonlinear Delay Line on Magnetostatic Waves”, Tech. Phys. Lett., 36:1 (2010), 76–79  crossref  adsnasa  elib; Pis'ma Zh. Tekh. Fiz., 36:2 (2010), 62–69 (Russian)
    [26] Hramov, A. E., Koronovskii, A. A., Maximenko, V. A, and Moskalenko, O. I., “Computation of the Spectrum of Spatial Lyapunov Exponents for the Spatially Extended Beam-Plasma Systems and Electron-Wave Devices”, Phys. Plasmas, 19:8 (2012), 082302, 11 pp.  crossref  adsnasa  elib
    [27] Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos of Standing Wave Patterns Generated Parametrically by a Modulated Pump Source”, Phys. Rev. E, 87:4 (2013), 040901(R), 4 pp.  crossref  adsnasa  elib
    [28] Isaeva, O. B., Kuznetsov, A. S., and Kuznetsov, S. P., “Hyperbolic Chaos in Parametric Oscillations of a String”, Nelin. Dinam., 9:1 (2013), 3–10 (Russian)  mathnet  crossref
    [29] Kanno, K., Uchida, A., and Bunsen, M. A., “Complexity and Bandwidth Enhancement in Unidirectionally Coupled Semiconductor Lasers with Time-Delayed Optical Feedback”, Phys. Rev. E, 93:3 (2016), 032206, 11 pp.  crossref  mathscinet  adsnasa  elib
    [30] Kaneko, K., “Doubling of Torus”, Progr. Theoret. Phys., 69:6 (1983), 1806–1810  crossref  mathscinet  zmath  adsnasa
    [31] Kuptsov, P. V., “Computation of Lyapunov Exponents for Spatially Extended Systems: Advantages and Limitations of Various Numerical Methods”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 18:5 (2010), 93–112 (Russian)  zmath
    [32] Kuptsov, P. V. and Parlitz, U., “Theory and Computation of Covariant Lyapunov Vectors”, J. Nonlinear Sci., 22:5 (2012), 727–762  crossref  mathscinet  zmath  adsnasa  elib
    [33] Kuptsov, P. V., “Fast Numerical Test of Hyperbolic Chaos”, Phys. Rev. E, 85:1 (2012), 015203(R), 4 pp.  crossref  adsnasa  elib
    [34] Kuptsov, P. V. and Kuznetsov, S. P., “Numerical Test for Hyperbolicity of Chaotic Dynamics in Time-Delay Systems”, Phys. Rev. E, 94:1 (2016), 010201(R), 7 pp.  crossref  mathscinet  adsnasa  elib
    [35] Kuznetsov, S. P., “Complex Dynamics of Oscillators with Delayed Feedback (Review)”, Radiophys. Quantum El., 25:12 (1982), 996–1009  crossref; Izv. Vyssh. Uchebn. Zaved. Radiofizika, 25:12 (1982), 1410–1428 (Russian)  adsnasa
    [36] Kuznetsov, S. P., Dynamical Chaos, 2nd ed., Fizmatlit, Moscow, 2006 (Russian)
    [37] Kuznetsov, S. P. and Trubetskov, D. I., “Chaos and Hyperchaos in a Backward-Wave Oscillator”, Radiophys. Quantum El., 47:5–6 (2004), 341–355  crossref; Izv. Vyssh. Uchebn. Zaved. Radiofizika, 47:5–6 (2004), 383–398 (Russian)
    [38] Nusinovich, G. S., Introduction to the Physics of Gyrotrons, J. Hopkins Univ. Press, Baltimore, 2004, 341 pp.
    [39] Pedersen, T. S., Mechelsen, P. K., and Rasmussen, J. J., “Lyapunov Exponents and Particle Dispersion in Drift Wave Turbulence”, Phys. Plasmas, 3:8 (1996), 2939–2950  crossref  mathscinet  adsnasa
    [40] Persson, N. and Nordman, H., “Low-Dimensional Chaotic Attractors in Drift Wave Turbulence”, Phys. Rev. Lett., 67:24 (1991), 3396–3399  crossref  adsnasa
    [41] Ruelle, D., “Ergodic Theory of Differentiable Dynamical Systems”, Inst. Hautes Études Sci. Publ. Math., 1979, no. 50, 27–58  crossref  mathscinet  zmath
    [42] Sano, M. and Sawada, Y., “Measurement of the Lyapunov Spectrum from a Chaotic Time Series”, Phys. Rev. Lett., 55:10 (1985), 1082–1085  crossref  mathscinet  adsnasa
    [43] Sauer, T. D., Tempkin, J. A., and Yorke, J. A., “Spurious Lyapunov Exponents in Attractor Reconstruction”, Phys. Rev. Lett., 81:20 (1998), 4341–4344  crossref  adsnasa
    [44] Thumm, M., State-of-the-Art of High Power Gyro-Devices and Free Electron Masers, KIT Sci. Rep., 7735, KIT Sci., Karlsruhe, 2017, 196 pp.
    [45] Tolkachev, A. A., Levitan, B. A., Solovjev, G. K., Veytsel, V. V., and Farber, V. E., “A Megawatt Power Millimeter-Wave Phased-Array Radar”, IEEE Aerosp. Electron. Syst. Mag., 15:7 (2000), 5–31  crossref
    [46] Vlasov, S. N., Zhislin, G. M., Orlova, I. M., Petelin, M. I., and Rogacheva, G. G., “Irregular Waveguides As Open Resonators”, Radiophys. Quantum El., 12:8 (1969), 972–978  crossref; Izv. Vyssh. Uchebn. Zaved. Radiofizika, 12:8 (1969), 1236–1244 (Russian)
    [47] Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., “Determining Lyapunov Exponents from a Time Series”, Phys. D, 16:3 (1985), 285–317  crossref  mathscinet  zmath
    [48] Yang, H., Radons, G., and Kantz, H., “Covariant Lyapunov Vectors from Reconstructed Dynamics: The Geometry behind True and Spurious Lyapunov Exponents”, Phys. Rev. Lett., 109:24 (2012), 244101, 4 pp.  crossref  adsnasa
    [49] Zasypkin, E. V., Gachev, I. G., and Antakov, I. I., “Experimental Study of a W-Band Gyroklystron Amplifier Operated in the High-Order TE021 Cavity Mode”, Radiophys. Quantum El., 55:5 (2012), 309–317  crossref  elib; Izv. Vyssh. Uchebn. Zaved. Radiofizika, 55:5 (2012), 341–350 (Russian)
    [50] Zeng, X., Eykholt, R., and Pielke, R. A., “Estimating the Lyapunov Exponent Spectrum from Short Time Series of Low Precision”, Phys. Rev. Lett., 66:25 (1991), 3229–3232  crossref  adsnasa

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License