Impact Factor

    Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators

    2018, Vol. 14, no. 4, pp.  419-433

    Author(s): Bukh A. V., Strelkova G. I., Anishchenko V. S.

    Effects of synchronization of chimera states are studied numerically in a two-layer network of nonlocally coupled nonlinear chaotic discrete-time systems. Each layer represents a ring of nonlocally coupled logistic maps in the chaotic mode. A control parameter mismatch is introduced to realize distinct spatiotemporal structures in isolated ensembles. We consider external synchronization of chimeras for unidirectional intercoupling and mutual synchronization in the case of bidirectional intercoupling. Synchronization is quantified by calculating the crosscorrelation coefficient between the symmetric elements of the interacting networks. The same quantity is used to determine finite regions of synchronization inside which the cross-correlation coefficient is equal to 1. The identity of synchronous structures and the existence of finite synchronization regions are necessary and sufficient conditions for establishing the synchronization effect. It is also shown that our results are qualitatively similar to the synchronization of periodic self-sustained oscillations.
    Keywords: multilayer networks, nonlocal coupling, chimera states, synchronization
    Citation: Bukh A. V., Strelkova G. I., Anishchenko V. S., Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 4, pp.  419-433

    Download File
    PDF, 1.16 Mb


    [1] Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V., and Shalfeev, V. D., Stability, Structures and Chaos in Nonlinear Synchronization Network, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 6, World Sci., Singapore, 1994, xii+246 pp.  mathscinet
    [2] Nekorkin, V. I. and Velarde, M. G., Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos, Springer, Berlin, 2002, xviii+357 pp.  mathscinet  zmath
    [3] Osipov, G., Kurths, J., and Zhou, C., Synchronization in Oscillatory Networks, Springer, Berlin, 2007, XIV, 370 pp.  mathscinet  zmath
    [4] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, New York, 2001, 432 pp.  mathscinet  zmath
    [5] Nekorkin, V. I. and Makarov, V. A., “Spatial Chaos in a Chain of Coupled Bistable Oscillators”, Phys. Rev. Lett., 74:24 (1995), 4819–4822  crossref  adsnasa
    [6] Nekorkin, V. I., Kazantsev, V. B., and Velarde, M. G., “Mutual Synchronization of Two Lattices of Bistable Elements”, Phys. Lett. A, 236:5–6 (1997), 505–512  crossref  adsnasa
    [7] Nekorkin, V. I., Voronin, M. L., and Velarde, M. G., “Clusters in an Ensemble of Globally Coupled Bistable Oscillators”, Eur. Phys. J. B, 9:3 (1999), 533–543  crossref  adsnasa
    [8] Belykh, V. N., Belykh, I. V., and Hasler, M., “Hierarchy and Stability of Partially Synchronous Oscillations of Diffusively Coupled Dynamical Systems”, Phys. Rev. E (3), 62:5 (2000), A, 6332–6345  crossref  mathscinet  adsnasa
    [9] Belykh, V. N., Belykh, I. V., and Mosekilde, E., “Cluster Synchronization Modes in an Ensemble of Coupled Chaotic Oscillators”, Phys. Rev. E, 63:3 (2001), 036216, 4 pp.  crossref  mathscinet  adsnasa
    [10] Akopov, A., Astakhov, V., Vadivasova, T., Shabunin, A., and Kapitaniak, T., “Frequency Synchronization of Clusters in Coupled Extended Systems”, Phys. Lett. A, 334:2–3 (2005), 169–172  crossref  zmath  adsnasa
    [11] Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, Th. E., and Roy, R., “Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks”, Nat. Commun., 5 (2014), 4079, 8 pp.  crossref
    [12] Kuramoto, Y. and Battogtokh, D., “Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385
    [13] Abrams, D. M. and Strogatz, S. H., “Chimera States for Coupled Oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102, 4 pp.  crossref  adsnasa
    [14] Panaggio, M. J. and Abrams, D. M., “Chimera States: Coexistence of Coherence and Incoherence in Networks of Coupled Oscillators”, Nonlinearity, 28:3 (2015)  crossref  mathscinet  zmath
    [15] Waller, I. and Kapral, R., “Spatial and Temporal Structure in Systems of Coupled Nonlinear Oscillators”, Phys. Rev. A, 30:4 (1984), 2047–2055  crossref  mathscinet  adsnasa
    [16] Kaneko, K., “Pattern Dynamics in Spatiotemporal Chaos: Pattern Selection, Diffusion of Defect and Pattern Competition Intermittency”, Phys. D, 34:1–2 (1989), 1–41  crossref  mathscinet  zmath
    [17] Astakhov, V. V., Anishchenko, V. S., and Shabunin, A.V., “Controlling Spatiotemporal Chaos in a Chain of the Coupled Logistic Maps”, IEEE Trans. Circuits Syst. I, 42:6 (1995), 352–357  crossref
    [18] Anishchenko, V. S., Astakhov, V. V., Neiman, A. B., Vadivasova, T. E., and Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments, 2nd ed., Springer, Berlin, 2007, 446 pp.  mathscinet  zmath
    [19] Abrams, D. M., Mirollo, R., Strogatz, S. H., and Wiley, D. A., “Solvable Model for Chimera States of Coupled Oscillators”, Phys. Rev. Lett., 101:8 (2008), 084103, 4 pp.  crossref  adsnasa
    [20] Laing, C. R., “Chimeras in Networks of Planar Oscillators”, Phys. Rev. E (3), 81:6 (2010), 066221, 4 pp.  crossref  mathscinet  adsnasa
    [21] Laing, C. R., “Fronts and Bumps in Spatially Extended Kuramoto Networks”, Phys. D, 240:24 (2011), 1960–1971  crossref  zmath
    [22] Martens, E. A., Laing, C. R., and Strogatz, S. H., “Solvable Model of Spiral Wave Chimeras”, Phys. Rev. Lett., 104:4 (2010), 044101, 4 pp.  crossref  adsnasa
    [23] Motter, A. E., “Nonlinear Dynamics: Spontaneous Synchrony Breaking”, Nat. Phys., 6 (2010), 164–165  crossref
    [24] Wolfrum, M. and Omel'chenko, O. E., “Chimera States Are Chaotic Transients”, Phys. Rev. E, 84:1 (2011), 015201(R), 4 pp.  crossref  adsnasa
    [25] Omelchenko, I., Maistrenko, Yu., Hövel, P., and Schöll, E., “Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States”, Phys. Rev. Lett., 106:23 (2011), 234102, 4 pp.  crossref  adsnasa
    [26] Omelchenko, I., Riemenschneider, B., Hövel, Ph., and Schöll, E., “Transition from Spatial Coherence to Incoherence in Coupled Chaotic Systems”, Phys. Rev. E, 85:2 (2012), 026212, 9 pp.  crossref  mathscinet  adsnasa
    [27] Maistrenko, Yu. L., Vasylenko, A., Sudakov, O., Levchenko, R., and Maistrenko, V. L., “Cascades of Multiheaded Chimera States for Coupled Phase Oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:8 (2014), 1440014, 17 pp.  crossref  mathscinet  zmath
    [28] Zakharova, A., Kapeller, M., and Schöll, E., “Chimera Death: Symmetry Breaking in Dynamical Networks”, Phys. Rev. Lett., 112:15 (2014), 154101, 5 pp.  crossref  adsnasa
    [29] Yeldesbay, A., Pikovsky, A., and Rosenblum, M., “Chimeralike States in an Ensemble of Globally Coupled Oscillators”, Phys. Rev. Lett., 112:14 (2014), 144103, 5 pp.  crossref  adsnasa
    [30] Dudkowski, D., Maistrenko, Yu., and Kapitaniak, T., “Different Types of Chimera States: An Interplay between Spatial and Dynamical Chaos”, Phys. Rev. E, 90:3 (2014), 032920, 5 pp.  crossref  adsnasa
    [31] Semenova, N., Zakharova, A., Schöll, E., and Anishchenko, V., “Does Hyperbolicity Impede Emergence of Chimera States in Networks of Nonlocally Coupled Chaotic Oscillators?”, Europhys. Lett., 112:4 (2015), 40002, 6 pp.  crossref  mathscinet  adsnasa
    [32] Olmi, S., Martens, E. A., Thutupalli, S., and Torcini, A., “Intermittent Chaotic Chimeras for Coupled Rotators”, Phys. Rev. E, 92:3 (2015), 030901, 6 pp.  crossref  adsnasa
    [33] Hizanidis, J., Panagakou, E., Omelchenko, I., Schöll, E., Hövel, Ph., and Provata, A., “Chimera States in Population Dynamics: Networks with Fragmented and Hierarchical Connectivities”, Phys. Rev. E, 92:1 (2015), 012915, 11 pp.  crossref  mathscinet  adsnasa
    [34] Vadivasova, T. E., Strelkova, G. I., Bogomolov, S. A., and Anishchenko, V. S., “Correlation Analysis of the Coherence-Incoherence Transition in a Ring of Nonlocally Coupled Logistic Maps”, Chaos, 26:9 (2016), 093108, 9 pp.  crossref  mathscinet  adsnasa
    [35] Kemeth, F. P., Haugland, S. W., Schmidt, L., Kevrekidis, I. G., and Krischer, K., “A Classification Scheme for Chimera States”, Chaos, 26:9 (2016), 094815, 8 pp.  crossref  adsnasa
    [36] Ulonska, S., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Networks of van der Pol Oscillators with Hierarchical Connectivities”, Chaos, 26:9 (2016), 094825, 9 pp.  crossref  mathscinet  adsnasa
    [37] Semenova, N., Zakharova, A., Anishchenko, V., and Schöll, E., “Coherence-Resonance Chimeras in a Network of Excitable Elements”, Phys. Rev. Lett., 117:1 (2016), 014102, 6 pp.  crossref  adsnasa
    [38] Schöll, E., “Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics”, Eur. Phys. J. Spec. Top., 225:6–7 (2016), 891–919  crossref
    [39] Semenov, V., Zakharova, A., Maistrenko, Yu., and Schöll, E., “Delayed-Feedback Chimera States: Forced Multiclusters and Stochastic Resonance”, Europhys. Lett., 115:1 (2016), 10005, 6 pp.  crossref  mathscinet  adsnasa
    [40] Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Complex Networks: Interplay of Fractal Topology and Delay”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1883–1892  crossref
    [41] Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “Transition from Complete Synchronization to Spatio-Temporal Chaos in Coupled Chaotic Systems with Nonhyperbolic and Hyperbolic Attractors”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1857–1866  crossref
    [42] Semenova, N. I., Strelkova, G. I., Anishchenko, V. S., and Zakharova, A., “Temporal Intermittency and the Lifetime of Chimera States in Ensembles of Nonlocally Coupled Chaotic Oscillators”, Chaos, 27:6 (2017), 061102, 6 pp.  crossref  mathscinet  zmath  adsnasa
    [43] Bogomolov, S. A., Slepnev, A. V., Strelkova, G. I., Schöll, E., and Anishchenko, V. S., “Mechanisms of Appearance of Amplitude and Phase Chimera States in Ensembles of Nonlocally Coupled Chaotic Systems”, Commun. Nonlinear Sci. Numer. Simul., 43 (2016), 25–36  crossref  mathscinet  adsnasa
    [44] Santos, M. S., Szezezh, J. D., Jr., Batista, A. M., Caldas, I. L., Viana, R. L., and Lopes, S. R., “Recurrence Quantification Analysis of Chimera States”, Phys. Lett. A, 379:37 (2015), 2188–2192  crossref  adsnasa
    [45] Zakharova, A., Semenova, N., Anishchenko, V., and Schöll, E., “Time-Delayed Feedback Control of Coherence Resonance Chimeras”, Chaos, 27:11 (2017), 114320, 9 pp.  crossref  mathscinet  zmath  adsnasa
    [46] Shepelev, I. A., Bukh, A. V., Vadivasova, T. E., Anishchenko, V. S., and Zakharova, A., “Double-Well Chimeras in $2$D Lattice of Chaotic Bistable Elements”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 50–61  crossref  mathscinet  adsnasa
    [47] Hagerstrom, A. M., Murphy, T. E., Roy, R., Hövel, P., Omelchenko, I., and Schöll, E., “Experimental Observation of Chimeras in Coupled-Map Lattices”, Nat. Phys., 8 (2012), 658–661  crossref
    [48] Tinsley, M. R., Nkomo, S., and Showalter, K., “Chimera and Phase Cluster States in Populations of Coupled Chemical Oscillators”, Nat. Phys., 8 (2012), 662–665  crossref
    [49] Larger, L., Penkovsky, B., and Maistrenko, Yu., “Virtual Chimera States for Delayed-Feedback Systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp.  crossref  adsnasa
    [50] Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O., “Chimera States in Mechanical Oscillator Networks”, Proc. Natl. Acad. Sci. USA, 110:26 (2013), 10563–10567  crossref  adsnasa
    [51] Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., and Maistrenko, Yu., “Imperfect Chimera States for Coupled Pendula”, Sci. Rep., 4 (2014), 6379, 4 pp.  crossref
    [52] Larger, L., Penkovsky, B., and Maistrenko, Yu., “Laser Chimeras As a Paradigm for Multistable Patterns in Complex Systems”, Nat. Commun., 6 (2015), 7752  crossref
    [53] Watanabe, S., Strogatz, S. H., van der Zant, H. S. J., and Orlando, T. P., “Whirling Modes and Parametric Instabilities in the Discrete sine-Gordon Equation: Experimental Tests in Josephson Rings”, Phys. Rev. Lett., 74:3 (1995), 379–382  crossref  adsnasa
    [54] Li, R. D. and Erneux, T., “Bifurcation to Standing and Traveling Waves in Large Arrays of Coupled Lasers”, Phys. Rev. A, 49:2 (1993), 1301–1312
    [55] Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A., and Antonopoulos, C. G., “Chimera-Like States in Modular Neural Networks”, Sci. Rep., 6 (2016), 19845, 10 pp.  crossref  adsnasa
    [56] Rattenborg, N. C., Amlaner, C. J., and Lima, S. L., “Behavioral, Neurophysiological and Evolutionary Perspectives on Unihemispheric Sleep”, Neurosci. Biobehav. Rev., 24:8 (2000), 817–842  crossref
    [57] Motter, A. E., Myers, S. A., Anghel, M., and Nishikawa, T., “Spontaneous Synchrony in Power-Grid Networks”, Nat. Phys., 9 (2013), 191–197  crossref
    [58] Nishikawa, T. and Motter, A. E., “Comparative Analysis of Existing Models for Power-Grid Synchronization”, New J. Phys., 17 (2015), 015012, 36  crossref  mathscinet
    [59] Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, G., Romance, M., Sendiña-Nadal, I., Wang, Z., and Zanin, M., “The Structure and Dynamics of Multilayer Networks”, Phys. Rep., 544:1 (2014), 1–122  crossref  mathscinet  adsnasa
    [60] Majhi, S., Perc, M., and Ghosh, D., “Chimera States in Uncoupled Neurons Induced by a Multilayer Structure”, Sci. Rep., 6 (2016), 39033, 10 pp.  crossref  adsnasa
    [61] Maksimenko, V. A., Makarov, V. V., Bera, B. K., Ghosh, D., Dana, S. K., Goremyko, M. V., Frolov, N. S., Koronovskii, A. A., and Hramov, A. E., “Excitation and Suppression of Chimera States by Multiplexing”, Phys. Rev. E, 94:5 (2016), 052205, 9 pp.  crossref  adsnasa
    [62] Ghosh, S., Kumar, A., Zakharova, A., and Jalan, S., “Birth and Death of Chimera: Interplay of Delay and Multiplexing”, Europhys. Lett., 115:6 (2016), 60005, 7 pp.  crossref  mathscinet  adsnasa
    [63] Majhi, S., Perc, M., and Ghosh, D., “Chimera States in a Multilayer Network of Coupled and Uncoupled Neurons”, Chaos, 27:7 (2017), 073109, 10 pp.  crossref  mathscinet  adsnasa
    [64] Pecora, L. M. and Carroll, Th. L., “Synchronization in Chaotic Systems”, Phys. Rev. Lett., 64:8 (1990), 821–824  crossref  mathscinet  zmath  adsnasa
    [65] Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abarbanel, H. D. I., “Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems”, Phys. Rev. E, 51:2 (1995), 980–994  crossref  mathscinet  adsnasa
    [66] Rosenblum, M. G., Pikovsky, A. S., and Kurths, J., “Phase Synchronization of Chaotic Oscillators”, Phys. Rev. Lett., 76:11 (1996), 1804–1807  crossref  mathscinet  adsnasa
    [67] Kocarev, L. and Parlitz, U., “Generalized Synchronization, Predictability and Equivalence of Unidirectionally Coupled Systems”, Phys. Rev. Lett., 76:11 (1996), 1816–1819  crossref  mathscinet  adsnasa
    [68] Li, C., Sun, W., and Kurths, J., “Synchronization between Two Coupled Complex Networks”, Phys. Rev. E, 76:4 (2007), 046204, 6 pp.  crossref  adsnasa
    [69] Tang, H., Chen, L., Lu, J., and Tse, C. K., “Adaptive Synchronization between Two Complex Networks with Nonidentical Topological Structures”, Phys. A, 387:22 (2008), 5623–5630  crossref
    [70] Wu, X., Zheng, W. X., and Zhou, J., “Generalized outer Synchronization between Complex Dynamical Networks”, Chaos, 19:1 (2009), 013109, 9 pp.  crossref  mathscinet  zmath  adsnasa
    [71] Wu, Y., Li, C., Wu, X., and Kurths, J., “Generalized Synchronization between Two Different Complex Networks”, Commun. Nonlinear Sci. Numer. Simul., 17:1 (2012), 349–355  crossref  mathscinet  zmath  adsnasa
    [72] Andrzejak, R. G., Ruzzene, G., and Malvestio, I., “Generalized Synchronization between Chimera States”, Chaos, 27:5 (2017), 053114, 6 pp.  crossref  mathscinet  zmath  adsnasa
    [73] Bukh, A., Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “New Type of Chimera and Mutual Synchronization of Spatiotemporal Structures in Two Coupled Ensembles of Nonlocally Coupled Interacting Chaotic Maps”, Chaos, 27:11 (2017), 111102, 7 pp.  crossref  mathscinet  zmath  adsnasa

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License