|
References
|
|
[1] |
Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F., “Stochastic Resonance”, Rev. Mod. Phys., 70:1 (1998), 223–287 |
[2] |
Landa, P. S. and McClintock, P. V. E., “Vibrational Resonance”, J. Phys. A, 33:45 (2000), L433–L438 |
[3] |
Karabalin, R. B., Lifshitz, R., Cross, M. C., Matheny, M. H., Masmanidis, S. C., and Roukes, M. L., “Signal Amplification by Sensitive Control of Bifurcation Topology”, Phys. Rev. Lett., 106:9 (2011), 094102, 4 pp. |
[4] |
Vijay, R., Devoret, M. H., and Siddiqi, I., “Invited Review Article: The Josephson Bifurcation Amplifier”, Rev. Sci. Instrum., 80:11 (2009), 111101, 17 pp. |
[5] |
Guckenheimer, J. and Holmes, Ph., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., 42, 5th ed., Springer, New York, 1997, 459 pp. |
[6] |
Jafrate, G. J., Ferry, D., and Reich, R., “Lateral (Two-Dimensional) Superlattices: Quantum-Well Confinement and Charge Instabilities”, Surf. Sci., 113:1–3 (1982), 485–488 |
[7] |
Reich, R. K., Crondin, R. O., and Ferry, D. K., “Transport in Lateral Surface Superlattices”, Phys. Rev. B, 27:6 (1983), 3483–3493 |
[8] |
Shmelev, G. M. and Maglevanny, I. I., “Transverse EMF in Lateral Superlattices”, Physics of Low-Dimensional Structures, 9–10 (1996), 81–88 |
[9] |
Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Thermally and Electrically Controllable Multiple High Harmonics Generation by Harmonically Driven Quasi-Two-Dimensional Electron Gas”, Superlattices Microstruct., 118 (2018), 29–44 |
[10] |
Epshtein, E. M., Shmelev, G. M., and Maglevanny, I. I., “Ferromagnetic and Ferroelectric Properties of Nonequilibrium Electron Gas”, Phys. Lett. A, 254:1–2 (1999), 107–111 |
[11] |
Maglevanny, I. I., “Highly Nonlinear Phenomena of Self-Organization of Quasi-Two-Dimensional Electron Gas in High Magnetic and Electric Fields”, Phys. Status Solidi B, 246:6 (2009), 1297–1305 |
[12] |
Grahn, H. T., von Klitzing, K., Ploog, K., and Döhler, G. H., “Electrical Transport in Narrow-Miniband Semiconductor Superlattices”, Phys. Rev. B, 43:14 (1991), 12094–12097 |
[13] |
Bass, F. G. and Tetervov, A. P., “High-Frequency Phenomena in Semiconductor Superlattices”, Phys. Rep., 140:5 (1986), 237–322 |
[14] |
Jung, P. and Talkner, P., “Suppression of Higher Harmonics at Noise Induced Resonances”, Phys. Rev. E, 51:3 (1995), 2640–2643 |
[15] |
Contemporary Problems in Statistical Physics, ed. G. H. Weiss, SIAM, Philadelphia, 1994, xviii + 251 pp. |
[16] |
Gilmore, R., Catastrophe Theory for Scientists and Engineers, Dover, New York, 1993, 666 pp. |
[17] |
Poston, T. and Stewart, I., Catastrophe Theory and Its Application, Pitman, London, 1978, xviii+491 pp. |
[18] |
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1256 pp. |
[19] |
Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: 1. Nonstiff Problems, Springer Series in Computational Mathematics, 8, 2nd ed., rev., Springer, Berlin, 1993, XV, 528 pp. |
[20] |
Bendat, J. S. and Piersol, A. G., Random Data: Analysis and Measurement Procedures, 4th ed., Wiley, New York, 2010, 640 pp. |