Weak Signals Amplification Through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas

    Received 23 August 2018; accepted 26 October 2018

    2018, Vol. 14, no. 4, pp.  453-472

    Author(s): Maglevanny I. I., Smolar V. A., Karyakina T. I.

    In this paper, we consider the activation processes in a nonlinear bistable system based on a lateral (quasi-two-dimensional) superlattice and study the dynamics of such a system externally driven by a harmonic force. The internal control parameters are the longitudinal applied electric field and the sample temperature. The spontaneous transverse electric field is considered as an order parameter. The forced violations of the order parameter are considered as a response of a system to periodic driving. We investigate the cooperative effects of self-organization and harmonic forcing from the viewpoint of catastrophe theory. Complex nonlinear behaviors including the energetic activation barrier or, more generally, a form of threshold leading to forced bifurcations of dc components of output response accompanied by enhancement of its odd harmonic components were discovered in limited narrow ranges of the control parameters space through numerical simulations. We observed the resonant behaviors of spectral amplification coefficient which is maximized when control parameters are tuned near the critical values of synergetic potential.
    Keywords: lateral superlattices, applied electric field, spontaneous transverse electric field, nonequilibrium phase transitions, synergetic potential, forced bifurcations, resonant enhancement
    Citation: Maglevanny I. I., Smolar V. A., Karyakina T. I., Weak Signals Amplification Through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 4, pp.  453-472

    Download File
    PDF, 972.64 Kb


    [1] Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F., “Stochastic Resonance”, Rev. Mod. Phys., 70:1 (1998), 223–287  crossref  adsnasa
    [2] Landa, P. S. and McClintock, P. V. E., “Vibrational Resonance”, J. Phys. A, 33:45 (2000), L433–L438  crossref  mathscinet  zmath
    [3] Karabalin, R. B., Lifshitz, R., Cross, M. C., Matheny, M. H., Masmanidis, S. C., and Roukes, M. L., “Signal Amplification by Sensitive Control of Bifurcation Topology”, Phys. Rev. Lett., 106:9 (2011), 094102, 4 pp.  crossref  adsnasa
    [4] Vijay, R., Devoret, M. H., and Siddiqi, I., “Invited Review Article: The Josephson Bifurcation Amplifier”, Rev. Sci. Instrum., 80:11 (2009), 111101, 17 pp.  crossref  adsnasa
    [5] Guckenheimer, J. and Holmes, Ph., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., 42, 5th ed., Springer, New York, 1997, 459 pp.  mathscinet
    [6] Jafrate, G. J., Ferry, D., and Reich, R., “Lateral (Two-Dimensional) Superlattices: Quantum-Well Confinement and Charge Instabilities”, Surf. Sci., 113:1–3 (1982), 485–488  crossref  adsnasa
    [7] Reich, R. K., Crondin, R. O., and Ferry, D. K., “Transport in Lateral Surface Superlattices”, Phys. Rev. B, 27:6 (1983), 3483–3493  crossref  adsnasa
    [8] Shmelev, G. M. and Maglevanny, I. I., “Transverse EMF in Lateral Superlattices”, Physics of Low-Dimensional Structures, 9–10 (1996), 81–88
    [9] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Thermally and Electrically Controllable Multiple High Harmonics Generation by Harmonically Driven Quasi-Two-Dimensional Electron Gas”, Superlattices Microstruct., 118 (2018), 29–44  crossref  adsnasa
    [10] Epshtein, E. M., Shmelev, G. M., and Maglevanny, I. I., “Ferromagnetic and Ferroelectric Properties of Nonequilibrium Electron Gas”, Phys. Lett. A, 254:1–2 (1999), 107–111  crossref  adsnasa
    [11] Maglevanny, I. I., “Highly Nonlinear Phenomena of Self-Organization of Quasi-Two-Dimensional Electron Gas in High Magnetic and Electric Fields”, Phys. Status Solidi B, 246:6 (2009), 1297–1305  crossref  adsnasa
    [12] Grahn, H. T., von Klitzing, K., Ploog, K., and Döhler, G. H., “Electrical Transport in Narrow-Miniband Semiconductor Superlattices”, Phys. Rev. B, 43:14 (1991), 12094–12097  crossref  adsnasa
    [13] Bass, F. G. and Tetervov, A. P., “High-Frequency Phenomena in Semiconductor Superlattices”, Phys. Rep., 140:5 (1986), 237–322  crossref  adsnasa
    [14] Jung, P. and Talkner, P., “Suppression of Higher Harmonics at Noise Induced Resonances”, Phys. Rev. E, 51:3 (1995), 2640–2643  crossref  adsnasa
    [15] Contemporary Problems in Statistical Physics, ed. G. H. Weiss, SIAM, Philadelphia, 1994, xviii + 251 pp.  zmath
    [16] Gilmore, R., Catastrophe Theory for Scientists and Engineers, Dover, New York, 1993, 666 pp.  mathscinet
    [17] Poston, T. and Stewart, I., Catastrophe Theory and Its Application, Pitman, London, 1978, xviii+491 pp.  mathscinet
    [18] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1256 pp.  mathscinet  zmath
    [19] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: 1. Nonstiff Problems, Springer Series in Computational Mathematics, 8, 2nd ed., rev., Springer, Berlin, 1993, XV, 528 pp.  mathscinet
    [20] Bendat, J. S. and Piersol, A. G., Random Data: Analysis and Measurement Procedures, 4th ed., Wiley, New York, 2010, 640 pp.  mathscinet  zmath

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License