# Dynamics of a Body with a Sharp Edge in a Viscous Fluid

2018, Vol. 14, no. 4, pp.  473-494

Author(s): Mamaev I. S., Tenenev V. A., Vetchanin E. V.

This paper addresses the problem of plane-parallel motion of the Zhukovskii foil in a viscous fluid. Various motion regimes of the foil are simulated on the basis of a joint numerical solution of the equations of body motion and the Navier – Stokes equations. According to the results of simulation of longitudinal, transverse and rotational motions, the average drag coefficients and added masses are calculated. The values of added masses agree with the results published previously and obtained within the framework of the model of an ideal fluid. It is shown that between the value of circulation determined from numerical experiments, and that determined according to the model of and ideal fluid, there is a correlation with the coefficient $\mathcal{R} = 0.722$. Approximations for the lift force and the moment of the lift force are constructed depending on the translational and angular velocity of motion of the foil. The equations of motion of the Zhukovskii foil in a viscous fluid are written taking into account the found approximations and the drag coefficients. The calculation results based on the proposed mathematical model are in qualitative agreement with the results of joint numerical solution of the equations of body motion and the Navier – Stokes equations.
Keywords: Zhukovskii foil, Navier – Stokes equations, joint solution of equations, finitedimensional model, viscous fluid, circulation, sharp edge
Citation: Mamaev I. S., Tenenev V. A., Vetchanin E. V., Dynamics of a Body with a Sharp Edge in a Viscous Fluid, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 4, pp.  473-494
DOI:10.20537/nd180404

## References

[1] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos, R&C Dynamics, Institute of Computer Science, Izhevsk, 2005, 576 pp. (Russian)
[2] Vetchanin, E. V. and Kilin, A. A., “Control of the Motion of an Unbalanced Heavy Ellipsoid in an Ideal Fluid Using Rotors”, Nelin. Dinam., 12:4 (2016), 663–674 (Russian)
[3] Zhukovsky, N. E., Collected Works, v. 1, Gostekhizdat, Moscow, 1937, 490 pp. (Russian)
[4] Kozlov, V. V., “On the Problem of Fall of a Rigid Body in a Resisting Medium”, Mosc. Univ. Mech. Bull., 45:1 (1990), 30–36    ; Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, 79–86 (Russian)
[5] Kochin, N. E., Kibel, I. A., and Roze, N. V., Theoretical Hydrodynamics, Wiley, New York, 1964, 583 pp.
[6] Lamb, H., Hydrodynamics, 6th ed., Dover, New York, 1945, 768 pp.
[7] Sedov, L. I., A Course in Continuum Mechanics, v. 2, Physical Functions and Formulations of Problems, Wolters-Noordhoff, Groningen, 1972, 330 pp.
[8] Tenenev, V. A., Vetchanin, E. V., Ilaletdinov, L. F., “Chaotic Dynamics in the Problem of the Fall of a Screw-Shaped Body in a Fluid”, Nelin. Dinam., 12:1 (2016), 99–120 (Russian)
[9] Chaplygin, S. A., “On the Pressure Exerted by a Plane-Parallel Flow upon an Obstructing Body (Contribution to the Theory of Aircraft”, The Selected Works on Wing Theory of Sergei A. Chaplygin, Garbell Research Foundation, San Francisco, 1956, 1–16  ; Mat. Sb., 28:1 (1910), 120–166 (Russian)
[10] Chaplygin, S. A., “On the Action of a Plane-Parallel Air Flow upon a Cylindrical Wing Moving within It”, The Selected Works on Wing Theory of Sergei A. Chaplygin, Garbell Research Foundation, San Francisco, 1956, 42–72
[11] Andersen, A., Pesavento, U., and Wang, Z. J., “Analysis of Transitions between Fluttering, Tumbling and Steady Descent of Falling Cards”, J. Fluid Mech., 541 (2005), 91–104
[12] Belmonte, A., Eisenberg, H., and Moses, E., “From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper”, Phys. Rev. Lett., 81:2 (1998), 345–348
[13] Birkhoff, G., Hydrodynamics: A Study in Logic, Fact, and Similitude, Princeton Univ. Press, Princeton, 2015, 202 pp.
[14] Bizyaev, I. A., Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., Fermi-Like Acceleration and Power Law Energy Growth in Nonholonomic Systems, 2018, 33 pp., arXiv: 1807.06262 [nlin.CD]
[15] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass, 2018, 14 pp., arXiv: arXiv:1807.06340 [nlin.CD]
[16] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975
[17] Blasius, H., “Funktionentheoretische Methoden in der Hydrodynamik”, Z. Math. Phys., 58 (1910), 90–110
[18] Borisov, A. V., Kozlov, V. V., and Mamaev, I. S., “Asymptotic Stability and Associated Problems of Dynamics of Falling Rigid Body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565
[19] Borisov, A. V., Kuznetsov, S. P., Mamaev, I. S., and Tenenev, V. A., “Describing the Motion of a Body with an Elliptical Cross Section in a Viscous Uncompressible Fluid by Model Equations Reconstructed from Data Processing”, Tech. Phys. Lett., 42:9 (2016), 886–890    ; Pis'ma Zh. Tekh. Fiz., 42:17 (2016), 9–19 (Russian)
[20] Borisov, A. V. and Mamaev, I. S., “On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation”, Chaos, 16:1 (2006), 013118, 7 pp.
[21] Borisov, A. V., Mamaev, I. S., and Vetchanin, E. V., “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502
[22] Borisov, A. V., Vetchanin, E. V., and Kilin, A. A., “Control Using Rotors of the Motion of a Triaxial Ellipsoid in a Fluid”, Math. Notes, 102:3–4 (2017), 455–464        ; Mat. Zametki, 102:4 (2017), 503–513 (Russian)
[23] Brendelev, V. N., “On the Realization of Constraints in Nonholonomic Mechanics”, J. Appl. Math. Mech., 45:3 (1981), 351–355      ; Prikl. Mat. Mekh., 45:3 (1981), 481–487 (Russian)
[24] Brown, C. E. and Michael, W. H., “Effect of Leading-Edge Separation on the Lift of a Delta Wing”, J. Aeronaut. Sci., 21:10 (1954), 690–694
[25] Childress, S., Spagnolie, S. E., and Tokieda, T., “A bug on a Raft: Recoil Locomotion in a Viscous Fluid”, J. Fluid Mech., 669 (2011), 527–556
[26] Eldredge, J. D., “Numerical Simulation of the Fluid Dynamics of $2D$ Rigid Body Motion with the Vortex Particle Method”, J. Comput. Phys., 221:2 (2007), 626–648
[27] Mason, R. J., Fluid Locomotion and Trajectory Planning for Shape-Changing Robots, PhD Dissertation, California Institute of Technology, Pasadena, Calif., 2003, 264 pp.
[28] Kasper, W., Aircraft Wing with Vortex Generation, U.S. Patent No. 3 831 885 (27 Aug 1974)
[29] Karapetyan, A. V., “On Realizing Nonholonomic Constraints by Viscous Friction Forces and Celtic Stones Stability”, J. Appl. Math. Mech., 45:1 (1981), 30–36      ; Prikl. Mat. Mekh., 45:1 (1981), 42–51 (Russian)
[30] Kirchhoff, G., Vorlesungen über mathematische Physik, v. 1, Mechanik, Teubner, Leipzig, 1876, 466 pp.
[31] Klenov, A. I. and Kilin, A. A., “Influence of Vortex Structures on the Controlled Motion of an Above-Water Screwless Robot”, Regul. Chaotic Dyn., 21:7–8 (2016), 927–938
[32] Kozlov, V. V., “Realization of Nonintegrable Constraints in Classical Mechanics”, Sov. Phys. Dokl., 28 (1983), 735–737      ; Dokl. Akad. Nauk SSSR, 272:3 (1983), 550–554 (Russian)
[33] Kozlov, V. V. and Ramodanov, S. M., “The Motion of a Variable Body in an Ideal Fluid”, J. Appl. Math. Mech., 65:4 (2001), 579–587      ; Prikl. Mat. Mekh., 65:4 (2001), 592–601 (Russian)
[34] Kozlov, V. V. and Ramodanov, S. M., “On the Motion of a Body with a Rigid Hull and Changing Geometry of Masses in an Ideal Fluid”, Dokl. Phys., 47:2 (2002), 132–135        ; Dokl. Akad. Nauk, 382:4 (2002), 478–481 (Russian)
[35] Kozlov, V. V. and Onishchenko, D. A., “Motion of a Body with Undeformable Shell and Variable Mass Geometry in an Unbounded Perfect Fluid: Special Issue Dedicated to Victor A. Pliss on the Occasion of His 70th Birthday”, J. Dynam. Differential Equations, 15:2–3 (2003), 553–570
[36] Kutta, W. M., “Auftriebskräfte in strömenden Flüssigkeiten”, Illustr. aeronaut. Mitteilungen, 6 (1902), 133–135
[37] Kuznetsov, S. P., “Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models”, Regul. Chaotic Dyn., 20:3 (2015), 345–382
[38] Michelin, S. and Llewellyn Smith, S. G., “An Unsteady Point Vortex Method for Coupled Fluid-Solid Problems”, Theor. Comput. Fluid Dyn., 23:2 (2009), 127–153
[39] Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A., and von Loebbecke, A., “A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows with Complex Boundaries”, J. Comput. Phys., 227:10 (2008), 4825–4852
[40] Mougin, G. and Magnaudet, J., “The Generalized Kirchhoff Equations and Their Application to the Interaction between a Rigid Body and an Arbitrary Time-Dependent Viscous Flow”, Int. J. Multiph. Flow, 28:11 (2002), 1837–1851
[41] Nelson, R., Protas, B., and Sakajo, T., “Linear Feedback Stabilization of Point-Vortex Equilibria near a Kasper Wing”, J. Fluid Mech., 827 (2017), 121–154
[42] Pollard, B., Berkey, T., and Tallapragada, Ph., “Direct Tail Actuation vs Internal Rotor Propulsion in Aquatic Robots”, ASME 2017 Dynamic Systems and Control Conference (Tysons, Va., USA, Oct 11–13, 2017), v. 1, DSCC2017-5208, V001T30A008, 6 pp.
[43] Ramodanov, S. M. and Tenenev, V. A., “Motion of a Body with Variable Distribution of Mass in a Boundless Viscous Liquid”, Nelin. Dinam., 7:3 (2011), 635–647 (Russian)
[44] Ramodanov, S. M., Tenenev, V. A., and Treschev, D. V., “Self-Propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558
[45] Tallapragada, Ph., “A Swimming Robot with an Internal Rotor As a Nonholonomic System”, Proc. of the American Control Conference (Chicago, Ill., USA, July 1–3, 2015), 657–662
[46] Tanabe, Y. and Kaneko, K., “Behavior of a Falling Paper”, Phys. Rev. Lett., 73:10 (1994), 1372–1375
[47] van der Waerden, B. L., Mathematische Statistik, Grundlehren Math. Wiss., 87, 3rd ed., Springer, Berlin, 2012, 360 pp.
[48] Vetchanin, E. V. and Gladkov, E. S., “Identification of Parameters of the Model of Toroidal Body Motion Using Experimental Data”, Nelin. Dinam., 14:1 (2018), 99–121 (Russian)
[49] Vetchanin, E. V. and Kilin, A. A., “Controlled Motion of a Rigid Body with Internal Mechanisms in an Ideal Incompressible Fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332        ; Tr. Mat. Inst. Steklova, 295 (2016), 321–351 (Russian)
[50] Vetchanin, E. V. and Kilin, A. A., “Control of Body Motion in an Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation around the Body”, J. Dyn. Control Syst., 23:2 (2017), 435–458
[51] Vetchanin, E. V., Mamaev, I. S., and Tenenev, V. A., “The Self-Propulsion of a Body with Moving Internal Masses in a Viscous Fluid”, Regul. Chaotic Dyn., 18:1–2 (2013), 100–117
[52] Woolsey, C. A. and Leonard, N. E., “Underwater Vehicle Stabilization by Internal Rotors”, Proc. of the American Control Conference (San Diego, Calif., 1999), 3417–3421
[53] Fedorov, Yu. N. and García-Naranjo, L. C., “The Hydrodynamic Chaplygin Sleigh”, J. Phys. A, 43:43 (2010), 434013, 18 pp.
[54] Karavaev, Yu. L., Kilin, A. A., and Klekovkin, A. V., “Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot”, Regul. Chaotic Dyn., 21:7–8 (2016), 918–926