Impact Factor

    On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane

    2018, Vol. 14, no. 4, pp.  519-542

    Author(s): Bardin B. S., Panev A. S.

    We consider a vibration-driven system which consists of a rigid body and an internal mass. The internal mass is a particle moving in a circle inside the body. The center of the circle is located at the mass center of the body and the absolute value of particle velocity is a constant. The body performs rectilinear motion on a horizontal plane, whereas the particle moves in a vertical plane. We suppose that dry friction acts between the plane and the body.
    We have investigated the dynamics of the above system in detail and given a full description of the body’s motion for any values of its initial velocity. In particular, it is shown that there always exists a periodic mode of motion. Depending on parameter values, one of three types of this periodic mode takes place. At any initial velocity the body either enters a periodic mode during a finite time interval or it asymptotically approaches the periodic mode.
    Keywords: periodic motion, dry friction, rigid body, vibration-driven system
    Citation: Bardin B. S., Panev A. S., On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane, Rus. J. Nonlin. Dyn., 2018, Vol. 14, no. 4, pp.  519-542

    Download File
    PDF, 2.51 Mb


    [1] Vartholomeos, P. and Papadopoulos, E., “Dynamics, Design and Simulation of a Novel Microrobotic Platform Employing Vibration Microactuators”, J. Dyn. Sys., Meas., Control, 128:1 (2005), 122–133  crossref
    [2] Vartholomeos, P. and Papadopoulos, E., “Analysis and Experiments on the Force Capabilities of Centripetal-Force-Actuated Microrobotic Platforms”, IEEE Trans. on Robotics, 24:3 (2008), 588–599  crossref
    [3] Vartholomeos, P., Papadopoulos, E., and Vlachos, K., “Analysis and Motion Control of a Centrifugal-Force Microrobotic Platform”, IEEE Trans. Autom. Sci. Eng., 10:3 (2013), 545–553  crossref
    [4] Vlachos, K., Papadimitriou, D., and Papadopoulos, E., “Vibration-Driven Microrobot Positioning Methodologies for Nonholonomic Constraint Compensation”, Engineering, 1:1 (2015), 66–72  crossref
    [5] Jatsun, S. F., Mischenko, V. Ya., and Safarov, D. I., “Investigation of a Two-Mass Vibrating Motion of the Robot”, Izv. Vyssh. Uchebn. Zaved. Mashinostr., 2006, no. 5, 32–42 (Russian)
    [6] Jatsun, S. F., Razin’kova, A. V., and Grankin, A. N., “Investigation of the Vibrating Motion of the Robot with Electromagnetic Drive”, Izv. Vyssh. Uchebn. Zaved. Mashinostr., 2006, no. 10, 53–64 (Russian)
    [7] Yatsun, S. F., Lupekhina, I. V., and Sapronov, K. A., “Modeling of Motion of Hopping Vibration Driven Microrobot”, Izv. Kursk. Gos. Tekh. Univ., 2009, no. 2(27), 25–31 (Russian)
    [8] Yatsun, S. F., Bezmen, P. A., Sapronov, K. A., and Rublev, S. B., “Dynamics of the Vibration Mobile Robot with Internal Movable Mass”, Izv. Kursk. Gos. Tekh. Univ., 2010, no. 2(31), 21a–31 (Russian)
    [9] Volkova, L. Yu. and Yatsun, S. F., “Simulation of the Plane Controlled Motion of a Three-Mass Vibration System”, J. Comput. Syst. Sci. Int., 51:6 (2012), 859–878  crossref  mathscinet  zmath; Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2012, no. 6, 122–141 (Russian)  zmath
    [10] Yatsun, S. F. and Volkova, L. Yu., “Simulation of Dynamic Modes of Vibration Robot Moving along the Surface of the Viscous Resistance”, Spectekhnika i svyaz, 2012, no. 3, 25–29 (Russian)
    [11] Volkova, L. Yu. and Yatsun, S. F., “Studying of Regularities of Movement of the Jumping Robot at Various Positions of a Point of Fixing of a Foot”, Nelin. Dinam., 9:2 (2013), 327–342 (Russian)  mathnet  crossref
    [12] Wang, Q. M., Zhang, W. M., and Ju, J. Ch., “Kinematics and Dynamics Analysis of a Micro-Robotic Platform Driven by Inertial-Force Propulsion”, Engineering Decisions for Industrial Development, Applied Mechanics and Materials, 733, eds. J. Xu, P. Wang, Zh. Fang, TransTech, Stäfa, 2015, 531–534  crossref
    [13] Chernous'ko, F. L., “On the Motion of a Body Containing a Movable Internal Mass”, Dokl. Phys., 50:11 (2005), 593–597  crossref  adsnasa; Dokl. Ross. Akad. Nauk, 405:1 (2005), 56–60 (Russian)  mathnet  mathscinet
    [14] Chernous'ko, F. L., “Analysis and Optimization of the Motion of a Body Controlled by Means of a Movable Internal Mass”, J. Appl. Math. Mech., 70:6 (2006), 819–842  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 70:6 (2006), 915–941 (Russian)  mathscinet  zmath
    [15] Bolotnik, N. N., Zeidis, I. M., Zimmermann, K., and Yatsun, S. F., “Dynamics of Controlled Motion of Vibration-Driven Systems”, J. Comput. Syst. Sci. Int., 45:5 (2006), 831–840  crossref  zmath; Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2006, no. 5, 157–167 (Russian)  zmath
    [16] Bolotnik, N. N. and Figurina, T. Yu., “Optimal Control of the Rectilinear Motion of a Rigid Body on a Rough Plane by Means of the Motion of Two Internal Masses”, J. Appl. Math. Mech., 72:2 (2008), 126–135  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 72:2 (2008), 216–229 (Russian)  mathscinet  zmath
    [17] Sobolev, N. A. and Sorokin, K. S., “Experimental Investigation of a Model of a Vibration-Driven Robot with Rotating Masses”, J. Comput. Syst. Sci. Int., 46:5 (2007), 826–835  crossref  zmath; Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2007, no. 5, 161–170 (Russian)  zmath
    [18] Figurina, T. Yu., “Optimal Motion Control for a System of Two Bodies on a Straight Line”, J. Comput. Syst. Sci. Int., 46:2 (2007), 227–233  crossref  mathscinet  zmath; Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2007, no. 2, 65–71 (Russian)  mathscinet  zmath
    [19] Sorokin, K. S., “Motion of a Mechanism along a Rough Inclined Plane Using the Motion of Internal Oscillating Masses”, J. Comput. Syst. Sci. Int., 48:6 (2009), 993–1001  crossref  mathscinet  zmath; Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2009, no. 6, 150–158 (Russian)  zmath
    [20] Ivanov, A. P. and Sakharov, A. V., “Dynamics of Rigid Body, Carrying Moving Masses and Rotor, on a Rough Plane”, Nelin. Dinam., 8:4 (2012), 763–772 (Russian)  mathnet  crossref
    [21] Zhan, X. and Xu, J., “Locomotion Analysis of a Vibration-Driven System with Three Acceleration Controlled Internal Masses”, Adv. Mech. Eng., 7:3 (2015), 12  crossref
    [22] Chernousko, F. L., “Motion of a Body along a Plane under the Influence of Movable Internal Masses”, Dokl. Phys., 61:10 (2016), 494–498  crossref  mathscinet  adsnasa; Dokl. Akad. Nauk, 470:4 (2016), 406–410 (Russian)  mathscinet
    [23] Bardin, B. S., “On Non-Impact Jumps of a Body Carrying Movable Masses”, Proc. of the 18th Internat. Symp. “Dynamics of Vibroimpact (Strong Nonlinear) Systems” (Moscow, 2015), 42–49 (Russian)
    [24] Bilchenko, G. G., “The Influence of Mobile Load on the Carrier Motion”, Proc. of the 11th Int. Chetaev Conf. “Analytical Mechanics, Stability and Control”, v. 1, Sect. 1, Analitical Dynamics, eds. S. N. Vassilyev et al., 37–44 (Russian)
    [25] Fang, H. and Xu, J., “Stick-Slip Effect in a Vibration-Driven System with Dry Friction: Sliding Bifurcations and Optimization”, J. Appl. Mech., 81:5 (2013), 051001, 10 pp.  crossref  mathscinet
    [26] Chernous'ko, F. L. and Bolotnik, N. N., “Mobile Robots Controlled by the Motion of Internal Bodies”, Tr. Inst. Mat. i Mekh. UrO RAN, 16:5 (2010), 213–222 (Russian)  mathnet
    [27] Bolotnik, N. N., Figurina, T. Yu., and Chernous'ko, F. L., “Optimal Control of the Rectilinear Motion of a Two-Body System in a Resistive Medium”, J. Appl. Math. Mech., 76:1 (2012), 1–14  crossref  mathscinet  zmath; Prikl. Mat. Mekh., 76:1 (2012), 3–22 (Russian)  mathscinet  zmath
    [28] Bolotnik, N. N., Nunuparov, A. M., and Chashchukhin, V. G., “Capsule-Type Vibration-Driven Robot with an Electromagnetic Actuator and an Opposing Spring: Dynamics and Control of Motion”, J. Comput. Syst. Sci. Int., 55:6 (2016), 986–1000  crossref  mathscinet  zmath; Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2016, no. 6, 146–160 (Russian)  mathscinet  zmath
    [29] Golitsyna, M. V., “Periodic Mode of Movement of the Vibration-Driven Robot with Limited Control”, Prikl. Mat. Mekh., 82:1 (2018), 3–15 (Russian)  mathscinet
    [30] Golitsyna, M. V. and Samsonov, V. A., “Estimating the Domain of Admissible Parameters of a Control System of a Vibratory Robot”, J. Comput. Syst. Sci. Int., 57:2 (2018), 255–272  crossref  mathscinet  zmath; Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2018, no. 2, 85–101 (Russian)  mathscinet  zmath
    [31] Chernous’ko, F. L., “Optimal Control of the Motion of a Two-Mass System”, Dokl. Math., 97:3 (2018), 295–299  crossref  zmath; Dokl. Akad. Nauk, 480:5 (2018), 528–532 (Russian)  zmath
    [32] Bardin, B. S. and Panev, A. S., “On Periodic Motions of the Body with Movable Internal Mass over a Horizontal Surface”, Trudy MAI, 84 (2015), 5 (Russian)
    [33] Bardin, B. S. and Panev, A. S., “On Dynamics of a Rigid Body Moving on a Horizontal Plane by Means of Motion of an Internal Particle”, Vibroeng. Procedia, 8 (2016), 135–141
    [34] Panev, A. S., “On Motion of a Rigid Body with Mobile Internal Mass on a Horizontal Plane in a Viscous Medium”, Trudy MAI, 98 (2018), 2 (Russian)
    [35] Bardin, B. S. and Panev, A. S., “On the Motion of a Rigid Body with an Internal Moving Point Mass on a Horizontal Plane”, AIP Conf. Proc., 1959:1 (2018), 030002  crossref
    [36] Filippov, A. F., “Differential Equations with Discontinuous Right-Hand Side”, Mat. Sb. (N. S.), 51(93):1 (1960), 99–128 (Russian)  mathnet  mathscinet  zmath
    [37] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Math. Appl., 18, Springer, Dordrecht, 1988, X, 304 pp.  mathscinet

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License