|
References
|
|
[1] |
Newhouse, S., Palis, J., and Takens, F., “Stable Arcs of Diffeomorphisms”, Bull. Amer. Math. Soc., 82:3 (1976), 499–502 |
[2] |
Newhouse, S. and Peixoto, M. M., “There Is a Simple Arc Joining Any Two Morse – Smale Flows”, Trois études en dynamique qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41 |
[3] |
Nozdrinova, E. V., “Rotation Number As a Complete Topological Invariant of a Simple Isotopic Class of Rough Transformations of a Circle”, Russian J. Nonlinear Dyn., 14:4 (2018), 543–551 |
[4] |
Blanchard, P. R., “Invariants of the NPT Isotopy Classes of Morse – Smale Diffeomorphisms of Surfaces”, Duke Math. J., 47:1 (1980), 33–46 |
[5] |
Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on $2$- and $3$-Manifolds, Dev. Math., 46, Springer, New York, 2016, XXVI, 295 pp. |
[6] |
von Kerékjártó, B., “Über die periodischen Transformationen der Kreisscheibe und der Kugelflache”, Math. Ann., 80:1 (1919), 36–38 |
[7] |
Newhouse, S., Palis, J., and Takens, F., “Bifurcations and Stability of Families of Diffeomorphisms”, Inst. Hautes Études Sci. Publ. Math., 1983, no. 57, 5–71 |
[8] |
Milnor, J., Lectures on the $h$-Cobordism Theorem, Princeton Univ. Press, Princeton, N.J., 1965, v+116 pp. |
[9] |
Katok, A. and Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, 802 pp. |
[10] |
Rolfsen, D., Knots and Links, Math. Lect. Ser., 7, Publish or Perish, Inc., Berkeley, Calif., 1976 |
[11] |
Banyaga, A., “On the Structure of the Group of Equivariant Diffeomorphisms”, Topology, 16:3 (1977), 279–283 |