Impact Factor

    Experimental Investigations of the Control Algorithm of a Mobile Manipulation Robot

    2019, Vol. 15, no. 4, pp.  487-495

    Author(s): Karavaev Y. L., Shestakov V. A., Yefremov K. S.

    This paper presents experimental investigations of the control algorithm of a highly maneuverable mobile manipulation robot. The kinematics of a mobile manipulation robot, the algorithm of trajectory planning of the mobile robot to the point of object gripping are considered. By realization of the algorithm, the following tasks are solved: solution of the inverse positional task for the mobile manipulation robot; motion planning of the mobile manipulator taking into account the minimization of energy and time consumption per movement. The result of the algorithm is a movement to the point of gripping of the manipulation object; grasping and loading of the object. Experimental investigations of the developed algorithms are given.
    Keywords: mobile manipulation robot, motion planning, trajectory discretization, Kinect
    Citation: Karavaev Y. L., Shestakov V. A., Yefremov K. S., Experimental Investigations of the Control Algorithm of a Mobile Manipulation Robot, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  487-495

    Download File
    PDF, 1.23 Mb


    [1] Aviles, O., Mauricio, F., Mauledoux, M., and Rubiano, O., “Electronic Architecture for a Mobile Manipulator”, International Journal of Online Engineering (iJOE), 14:2 (2018), 133–142  crossref
    [2] Röhrig, Ch., Heß, D., and Künemund, F., “Motion Controller Design for a Mecanum Wheeled Mobile Manipulator”, Proc. of the IEEE Conf. on Control Technology and Applications (CCTA, Mauna Lani, Hawaii, USA, 2017), 444–449
    [3] Hvilshoj, M. and Bogh, S., Int. J. Adv. Robot. Syst., 8:2 (2011), 80–90  crossref
    [4] Dömel, A., Kriegel, S., Kaßecker, M., Brucker, M., Bodenmüller, T., and Suppa, M., “Toward Fully Autonomous Mobile Manipulation for Industrial Environments”, Int. J. Adv. Robot. Syst., 14:4 (2017), 1–19  crossref
    [5] Nieuwenhuisen, M., Droeschel, D., Holz, D., Stückler, J., Berner, A., Li, J., Klein, R., and Behnke, S., “Mobile Bin Picking with an Anthropomorphic Service Robot”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (Karlsruhe, 2013), 2327–2334
    [6] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “An Omni-Wheel Vehicle on a Plane and a Sphere”, Nelin. Dinam., 7:4 (2011), 785–801 (Russian)  mathnet  crossref
    [7] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian)  mathnet  crossref  mathscinet
    [8] Kilin, A., Bozek, P., Karavaev, Yu., Klekovkin, A., and Shestakov, V., “Experimental Investigations of a Highly Maneuverable Mobile Omniwheel Robot”, Int. J. Adv. Robot. Syst., 14:6 (2017), 1–9  crossref
    [9] Karavaev, Yu. L. and Trefilov, S. A., “Deviation Based Discrete Control Algorithm for Omni-Wheeled Mobile Robot”, Nelin. Dinam., 9:2 (2013), 91–100 (Russian)  crossref
    [10] Karavaev, Yu. and Shestakov, V., “Construction of a Service Area of a Highly Maneuverable Mobile Manipulation Robot”, Intellekt. Sist. v Proizv., 16:3 (2018), 90–96 (Russian)  crossref
    [11] Zenkevich, S. L. and Yushchenko, A. S., Fundamentals of Manipulation Robots, MGTU, Moscow, 2004, 576 pp. (Russian)
    [12] Prokop, J., Richard, P., and Reeves, A., “A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition”, CVGIP-Graph. Model. Im., 54:5 (1992), 438–460  crossref
    [13] Mercimek, M., Gulez, K., and Mumcu, T. V., “Real Object Recognition Using Moment Invariants”, Sadhana, 30:6 (2005), 765–775  crossref  zmath
    [14] Lachat, E., Macher, H., Mittet, M.-A., Landes, T., and Grussenmeyer, P., “First Experiences with Kinect v2 Sensor for Close Range 3D Modelling”, ISPRS: Internat. Arch. of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2015), v. XL-5/W4, 93–100

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License