|
References
|
|
[1] |
Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “Chaplygin Sleigh with Periodically Oscillating Internal Mass”, Europhys. Lett., 119:6 (2017), 60008, 7 pp. |
[2] |
Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975 |
[3] |
Borisov, A. V., Kilin, A. A., and Pivovarova, E. N., “Speedup of the Chaplygin Top by Means of Rotors”, Dokl. Phys., 64:3 (2019), 120–124 ; Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian) |
[4] |
Belichenko, M. V., “On the Stability of Pendulum-type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point”, Russian Journal of Nonlinear Dynamics, 14:2 (2018), 243–263 |
[5] |
Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 |
[6] |
Yudovich, V. I., “Vibrodynamics and Vibrogeometry in Mechanical Systems with Constraints”, Uspekhi Mekh., 4:3 (2006), 26–158 (Russian) |
[7] |
Markeyev, A. P., “The Equations of the Approximate Theory of the Motion of a Rigid Body with a Vibrating Suspension Point”, J. Appl. Math. Mech., 75:2 (2011), 132–139 |
[8] |
Kholostova, O. V., “On the Periodic Motion of Lagrange’s Top with Vibrating Suspension”, Mech. Solids, 2002, no. 1, 26–38 |
[9] |
Ylikorpi, T., Mobility and Motion Modelling of Pendulum-Driven Ball Decoupled Models Robots: for Steering and Obstacle Crossing, Doctoral Dissertations, School of Electrical Engineering, 2017, 251 pp. |
[10] |
Chase, R. and Pandya, A., “A Review of Active Mechanical Driving Principles of Spherical Robots”, Robotics, 1:1 (2012), 3–23 |
[11] |
Chen, W.-H., Chen, C.-P., Yu, W.-S., Lin, C.-H., and Lin, P.-C., “Design and Implementation of an Omnidirectional Spherical Robot Omnicron”, IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (Kaohsiung (Taiwan)), in Proc. 2012 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2012, 719–724 |
[12] |
Crossley, V. A., A Literature Review on the Design of Spherical Rolling Robots, Preprint, Carnegie Mellon Univ.,Pittsburgh, PA, 2006 |
[13] |
Akella, P., O'Reilly, O., and Sreenath, K., “Controlling the Locomotion of Spherical Robots or Why BB-8 Works”, J. Mechanisms Robotics, 11:2 (2019), 024501, 4 pp. |
[14] |
Tafrishi, S. A., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot”, J. Mechanisms Robotics, 11:4 (2019), 041010, 10 pp. |
[15] |
Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 |
[16] |
Kilin, A. A. and Karavaev, Yu. L., “Experimental Research of Dynamic of Spherical Robot of Combined Type”, Nelin. Dinam., 11:4 (2015), 721–734 (Russian) |
[17] |
Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592 |
[18] |
Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 1”, J. Dyn. Control Syst., 24:3 (2018), 497–510 |
[19] |
Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 2”, J. Dyn. Control Syst., 25:1 (2019), 1–16 |
[20] |
Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “The Jacobi Integral in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 |