The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions


    2019, Vol. 15, no. 4, pp.  497-504

    Author(s): Karavaev Y. L., Kilin A. A.

    This paper presents the results of the study of the dynamics of a real spherical robot of combined type in the case of control using small periodic oscillations. The spherical robot is set in motion by controlled change of the position of the center of mass and by generating variable gyrostatic momentum. We demonstrate how to use small periodic controls for stabilization of the spherical robot during motion. The results of numerical simulation are obtained for various initial conditions and control parameters that ensure a change in the position of the center of mass and a variation of gyrostatic momentum. The problem of the motion of a spherical robot of combined type on a surface that performs flat periodic oscillations is also considered. The results of numerical simulation are obtained for different initial conditions, control actions and parameters of oscillations.
    Keywords: spherical robot, nonholonomic constraint, small periodic control actions, stabilization
    Citation: Karavaev Y. L., Kilin A. A., The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  497-504
    DOI:10.20537/nd190408


    Download File
    PDF, 528.42 Kb

    References

    [1] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “Chaplygin Sleigh with Periodically Oscillating Internal Mass”, Europhys. Lett., 119:6 (2017), 60008, 7 pp.  crossref  mathscinet  adsnasa
    [2] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975  mathnet  crossref  mathscinet  zmath  adsnasa
    [3] Borisov, A. V., Kilin, A. A., and Pivovarova, E. N., “Speedup of the Chaplygin Top by Means of Rotors”, Dokl. Phys., 64:3 (2019), 120–124  mathnet  crossref  adsnasa; Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian)
    [4] Belichenko, M. V., “On the Stability of Pendulum-type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point”, Russian Journal of Nonlinear Dynamics, 14:2 (2018), 243–263  mathscinet  zmath
    [5] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [6] Yudovich, V. I., “Vibrodynamics and Vibrogeometry in Mechanical Systems with Constraints”, Uspekhi Mekh., 4:3 (2006), 26–158 (Russian)  mathscinet
    [7] Markeyev, A. P., “The Equations of the Approximate Theory of the Motion of a Rigid Body with a Vibrating Suspension Point”, J. Appl. Math. Mech., 75:2 (2011), 132–139  crossref  mathscinet  zmath  elib
    [8] Kholostova, O. V., “On the Periodic Motion of Lagrange’s Top with Vibrating Suspension”, Mech. Solids, 2002, no. 1, 26–38
    [9] Ylikorpi, T., Mobility and Motion Modelling of Pendulum-Driven Ball Decoupled Models Robots: for Steering and Obstacle Crossing, Doctoral Dissertations, School of Electrical Engineering, 2017, 251 pp.
    [10] Chase, R. and Pandya, A., “A Review of Active Mechanical Driving Principles of Spherical Robots”, Robotics, 1:1 (2012), 3–23  crossref
    [11] Chen, W.-H., Chen, C.-P., Yu, W.-S., Lin, C.-H., and Lin, P.-C., “Design and Implementation of an Omnidirectional Spherical Robot Omnicron”, IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (Kaohsiung (Taiwan)), in Proc. 2012 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2012, 719–724
    [12] Crossley, V. A., A Literature Review on the Design of Spherical Rolling Robots, Preprint, Carnegie Mellon Univ.,Pittsburgh, PA, 2006
    [13] Akella, P., O'Reilly, O., and Sreenath, K., “Controlling the Locomotion of Spherical Robots or Why BB-8 Works”, J. Mechanisms Robotics, 11:2 (2019), 024501, 4 pp.  crossref
    [14] Tafrishi, S. A., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot”, J. Mechanisms Robotics, 11:4 (2019), 041010, 10 pp.  crossref
    [15] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [16] Kilin, A. A. and Karavaev, Yu. L., “Experimental Research of Dynamic of Spherical Robot of Combined Type”, Nelin. Dinam., 11:4 (2015), 721–734 (Russian)  mathnet  crossref  mathscinet  zmath
    [17] Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592  crossref  mathscinet
    [18] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 1”, J. Dyn. Control Syst., 24:3 (2018), 497–510  crossref  mathscinet  zmath
    [19] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 2”, J. Dyn. Control Syst., 25:1 (2019), 1–16  crossref  mathscinet  zmath
    [20] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “The Jacobi Integral in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400  mathnet  crossref  mathscinet  zmath  adsnasa  elib



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License