Select language: En
0
2013
Impact Factor

    Sergey Bolotin

    Sergey Bolotin
    119899, Moscow, Vorobyevy gory
    Lomonosov Moscow State University

    Publications:

    Bolotin S. V., Popova T. V.
    Abstract
    We consider a mechanical system inside a rolling ball and show that if the ideal constraints have spherical symmetry, the equations of motion have a Lagrangian form. Without symmetry, this is not true.
    Keywords: nonholonomic constraint, rolling ball, Lagrange equations, Hamilton principle
    Citation: Bolotin S. V., Popova T. V.,  On the motion of a mechanical system inside a rolling ball, Rus. J. Nonlin. Dyn., 2013, Vol. 9, No. 1, pp.  51-58
    DOI:10.20537/nd1301005
    Bolotin S. V.
    Abstract
    We study the problem of optimal control of a Chaplygin ball on a plane by means of 3 internal rotors. Using Pontryagin maximum principle, the equations of extremals are reduced to Hamiltonian equations in group variables. For a spherically symmetric ball, the solutions can be expressed in by elliptic functions.
    Keywords: nonholonomic constraint, vaconomic mechanics, optimal control, maximum principle, Hamiltonian
    Citation: Bolotin S. V.,  The problem of optimal control of a Chaplygin ball by internal rotors, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 4, pp.  837-852
    DOI:10.20537/nd1204011
    Borisov A. V., Bolotin S. V., Kilin A. A., Mamaev I. S., Treschev D. V.
    Valery Vasilievich Kozlov. On his 60th birthday
    2010, Vol. 6, No. 3, pp.  461-488
    Abstract
    Citation: Borisov A. V., Bolotin S. V., Kilin A. A., Mamaev I. S., Treschev D. V.,  Valery Vasilievich Kozlov. On his 60th birthday, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 3, pp.  461-488
    DOI:10.20537/nd1003001

    Back to the list