Dmitry Treschev

    Dmitry Treschev
    Gubkina 8, Moscow, 119991 Russia
    Steklov Mathematical Institute, Russian Academy of Sciences

    Publications:

    Borisov A. V., Mamaev I. S., Treschev D. V.
    Abstract
    In this paper we investigate various kinematic properties of rolling of one rigid body on another both for the classical model of rolling without slipping (the velocities of bodies at the point of contact coincide) and for the model of rubber-rolling (with the additional condition that the spinning of the bodies relative to each other be excluded). Furthermore, in the case where both bodies are bounded by spherical surfaces and one of them is fixed, the equations of motion for a moving ball are represented in the form of the Chaplygin system. When the center of mass of the moving ball coincides with its geometric center, the equations of motion are represented in conformally Hamiltonian form, and in the case where the radii of the moving and fixed spheres coincides, they are written in Hamiltonian form.
    Keywords: rolling without slipping, nonholonomic constraint, Chaplygin system, conformally Hamiltonian system
    Citation: Borisov A. V., Mamaev I. S., Treschev D. V.,  Rolling of a rigid body without slipping and spinning: kinematics and dynamics, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 4, pp.  783-797
    DOI:10.20537/nd1204008
    Ramodanov S. M., Tenenev V. A., Treschev D. V.
    Abstract
    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are represented in the form of the Kirchhoff equations. In the case of piecewise continuous controls, the integrals of motion are indicated. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. An optimal control problem for several types of the inputs is then solved using genetic algorithms.
    Keywords: perfect fluid, self-propulsion, Flettner rotor
    Citation: Ramodanov S. M., Tenenev V. A., Treschev D. V.,  Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 4, pp.  799-813
    DOI:10.20537/nd1204009
    Treschev D. V., Erdakova N. N., Ivanova T. B.
    Abstract
    The problem of a uniform straight cylinder (disc) sliding on a horizontal plane under the action of dry friction forces is considered. The contact patch between the cylinder and the plane coincides with the base of the cylinder. We consider axisymmetric discs, i.e. we assume that the base of the cylinder is symmetric with respect to the axis lying in the plane of the base. The focus is on the qualitative properties of the dynamics of discs whose circular base, triangular base and three points are in contact with a rough plane.
    Keywords: Amontons–Coulomb law, dry friction, disc, final dynamics, stability
    Citation: Treschev D. V., Erdakova N. N., Ivanova T. B.,  On the final motion of cylindrical solids on a rough plane, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 3, pp.  585-603
    DOI:10.20537/nd1203012
    Salnikova T. V., Treschev D. V., Gallyamov S. R.
    Abstract
    We consider the problem of a disk sliding on a horizontal plane under the action of dry friction forces. The model is based on three hypotheses. The law of interaction of a small element of the disk’s surface with the plane is the Amonton–Coulomb law, the pressure distribution over the contact patch is a linear (generally speaking, time-dependent) function of Cartesian coordinates, the height of the disk is not high. The equations of motion possess a rich group of symmetry, which enables a detailed qualitative analysis of the problem.
    Keywords: dry friction, Amontons–Coulomb law
    Citation: Salnikova T. V., Treschev D. V., Gallyamov S. R.,  On the motion of free disc on the rough horisontal plane, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 1, pp.  83-101
    DOI:10.20537/nd1201006
    Kuleshov A. S., Treschev D. V., Ivanova T. B., Naymushina O. S.
    A rigid cylinder on a viscoelastic plane
    2011, Vol. 7, No. 3, pp.  601-625
    Abstract
    The paper considers two two-dimensional dynamical problems for an absolutely rigid cylinder interacting with a deformable flat base (the motion of an absolutely rigid disk on a base which in non-deformed condition is a straight line). The base is a sufficiently stiff viscoelastic medium that creates a normal pressure $p(x) = kY(x)+ν\dot{Y}(x)$, where $x$ is a coordinate on the straight line, $Y(x)$ is a normal displacement of the point $x$, and $k$ and $ν$ are elasticity and viscosity coefficients (the Kelvin—Voigt medium). We are also of the opinion that during deformation the base generates friction forces, which are subject to Coulomb’s law. We consider the phenomenon of impact that arises during an arbitrary fall of the disk onto the straight line and investigate the disk’s motion «along the straight line» including the stages of sliding and rolling.
    Keywords: Kelvin–Voight medium, impact, viscoelasticity, friction
    Citation: Kuleshov A. S., Treschev D. V., Ivanova T. B., Naymushina O. S.,  A rigid cylinder on a viscoelastic plane, Rus. J. Nonlin. Dyn., 2011, Vol. 7, No. 3, pp.  601-625
    DOI:10.20537/nd1103014
    Borisov A. V., Bolotin S. V., Kilin A. A., Mamaev I. S., Treschev D. V.
    Valery Vasilievich Kozlov. On his 60th birthday
    2010, Vol. 6, No. 3, pp.  461-488
    Abstract
    Citation: Borisov A. V., Bolotin S. V., Kilin A. A., Mamaev I. S., Treschev D. V.,  Valery Vasilievich Kozlov. On his 60th birthday, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 3, pp.  461-488
    DOI:10.20537/nd1003001

    Back to the list