Vyacheslav Kruglov
Publications:
Kuznetsov S. P., Kruglov V. P., Sedova Y. V.
Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums
2020, Vol. 16, no. 1, pp. 51-58
Abstract
We discuss two mechanical systems with hyperbolic chaotic attractors of Smale – Williams
type. Both models are based on Froude pendulums. The first system is composed of two
coupled Froude pendulums with alternating periodic braking. The second system is Froude
pendulum with time-delayed feedback and periodic braking. We demonstrate by means of
numerical simulations that the proposed models have chaotic attractors of Smale – Williams
type. We specify regions of parameter values at which the dynamics corresponds to the Smale –
Williams solenoid. We check numerically the hyperbolicity of the attractors.
|
Doroshenko V. M., Kruglov V. P., Kuznetsov S. P.
Smale – Williams Solenoids in a System of Coupled Bonhoeffer – van der Pol Oscillators
2018, Vol. 14, no. 4, pp. 435-451
Abstract
The principle of constructing a new class of systems demonstrating hyperbolic chaotic attractors
is proposed. It is based on using subsystems, the transfer of oscillatory excitation
between which is provided resonantly due to the difference in the frequencies of small and large
(relaxation) oscillations by an integer number of times, accompanied by phase transformation
according to an expanding circle map. As an example, we consider a system where a Smale – Williams attractor is realized, which is based on two coupled Bonhoeffer – van der Pol oscillators.
Due to the applied modulation of parameter controlling the Andronov – Hopf bifurcation, the
oscillators manifest activity and suppression turn by turn. With appropriate selection of the
modulation form, relaxation oscillations occur at the end of each activity stage, the fundamental
frequency of which is by an integer factor $M = 2, 3, 4, \ldots$ smaller than that of small oscillations.
When the partner oscillator enters the activity stage, the oscillations start being stimulated by
the $M$-th harmonic of the relaxation oscillations, so that the transformation of the oscillation
phase during the modulation period corresponds to the $M$-fold expanding circle map. In the state
space of the Poincaré map this corresponds to an attractor of Smale – Williams type, constructed
with $M$-fold increase in the number of turns of the winding at each step of the mapping. The results
of numerical studies confirming the occurrence of the hyperbolic attractors in certain parameter
domains are presented, including the waveforms of the oscillations, portraits of attractors, diagrams illustrating the phase transformation according to the expanding circle map, Lyapunov
exponents, and charts of dynamic regimes in parameter planes. The hyperbolic nature of the
attractors is verified by numerical calculations that confirm the absence of tangencies of stable
and unstable manifolds for trajectories on the attractor (“criterion of angles”). An electronic
circuit is proposed that implements this principle of obtaining the hyperbolic chaos and its
functioning is demonstrated using the software package Multisim.
|
Doroshenko V. M., Kruglov V. P., Kuznetsov S. P.
Chaos generator with the Smale–Williams attractor based on oscillation death
2017, Vol. 13, No. 3, pp. 303-315
Abstract
A nonautonomous system with a uniformly hyperbolic attractor of Smale – Williams type in
a Poincaré cross-section is proposed with generation implemented on the basis of the effect of
oscillation death. The results of a numerical study of the system are presented: iteration diagrams
for phases and portraits of the attractor in the stroboscopic Poincaré cross-section, power density
spectra, Lyapunov exponents and their dependence on parameters, and the atlas of regimes. The
hyperbolicity of the attractor is verified using the criterion of angles.
|
Kuznetsov S. P., Kuznetsov A. S., Kruglov V. P.
Hyperbolic chaos in systems with parametrically excited patterns of standing waves
2014, Vol. 10, No. 3, pp. 265-277
Abstract
We outline a possibility of implementation of Smale–Williams type attractors with different stretching factors for the angular coordinate, namely, $n=3,\,5,\,7,\,9,\,11$, for the maps describing the evolution of parametrically excited standing wave patterns on a nonlinear string over a period of modulation of pump accompanying by alternate excitation of modes with the wavelength ratios of $1:n$.
|