Смирнов Валерий Валентинович
119991, Москва, ул. Косыгина, 4
ФГБУН Институт химической физики им. Н.Н. Семенова Российской академии наук
Публикации:
Смирнов В. В., Маневич Л. И.
Complex Envelope Variable Approximation in Nonlinear Dynamics
2020, vol. 16, no. 3, с. 491-515
Подробнее
We present the complex envelope variable approximation (CEVA) as a useful and compact
method for analysis of essentially nonlinear dynamical systems. The basic idea is that the
introduction of complex variables, which are analogues of the creation and annihilation operators
in quantum mechanics, considerably simplifies the analysis of a number of nonlinear dynamical
systems. The first stage of the procedure, in fact, does not require any additional assumptions,
except for the proposition of the existence of a single-frequency stationary solution. This allows
us to study both the stationary and nonstationary dynamics even in the cases when there are no
small parameters in the initial problem. In particular, the CEVA method provides an analysis of
nonlinear normal modes and their resonant interactions in discrete systems for a wide range of
oscillation amplitudes. The dispersion relations depending on the oscillation amplitudes can be
obtained in analytical form for both the conservative and the dissipative nonlinear lattices in the
framework of the main-order approximation. In order to analyze the nonstationary dynamical
processes, we suggest a new notion — the “slow” Hamiltonian, which allows us to generate the
nonstationary equations in the slow time scale. The limiting phase trajectory, the bifurcations of
which determine such processes as the energy localization in the nonlinear chains or the escape
from the potential well under the action of external forces, can be also analyzed in the CEVA.
A number of complex problems were studied earlier in the framework of various modifications
of the method, but the accurate formulation of the CEVA with the step-by-step illustration is
described here for the first time. In this paper we formulate the CEVA’s formalism and give
some nontrivial examples of its application.
|
Смирнов В. В., Ковалева М. А., Маневич Л. И.
Nonlinear Dynamics of Torsion Lattices
2018, vol. 14, no. 2, с. 179-193
Подробнее
We present an analysis of torsion oscillations in quasi-one-dimensional lattices with periodic potentials of the nearest neighbor interaction. A one-dimensional chain of point dipoles (spins) under an external field and without the latter is the simplest realization of such a system. We obtained dispersion relations for the nonlinear normal modes for a wide range of oscillation amplitudes and wave numbers. The features of the short wavelength part of the spectrum at large-amplitude oscillations are discussed. The problem of localized excitations near the edges of the spectrum is studied by the asymptotic method. We show that the localized oscillations (breathers) appear near the long wavelength edge, while the short wavelength edge of the spectrum contains only dark solitons. The continuum limit of the dynamic equations leads to a generalization of the nonlinear Schrödinger equation and can be considered as a complex representation of the sine-Gordon equation.
|
Ковалева М., Смирнов В. В., Маневич Л. И.
Стационарная и нестационарная динамика системы двух гармонически связанных маятников
2017, том 13, № 1, с. 105-115
Подробнее
Представлен анализ нелинейной динамики маятников с гармонической связью без ограничений на амплитуды колебаний. Данная модель является базовой в ряде областей механики и физики (кристаллы парафинов, молекулы ДНК и др.). Получены стационарные решения уравнений движения, соответствующие нелинейным нормальным модам (ННМ). Выявлена инверсия частотных характеристик ННМ при увеличении амплитуды колебаний. В предположении о резонансном взаимодействии ННМ введен медленный масштаб времени, определяющий характерные времена энергообмена между маятниками. Существенно нестационарный процесс полного энергообмена описан в терминах предельных фазовых траекторий (ПФТ), для которых получено эффективное аналитическое представление. Найдены явные выражения пороговых значений безразмерных параметров, соответствующие неустойчивости ННМ и переходу (в параметрическом пространстве) от полного энергообмена между маятниками к локализации энергии. Полученные аналитические результаты подтверждены построением сечений Пуанкаре исходной системы.
|