Coupled universal maps demonstrating Neimark–Saker bifurcation

    2012, Vol. 8, No. 3, pp.  473-482

    Author(s): Kuznetsov A. P., Pozdnyakov M. V., Sedova Y. V.

    We examine the dynamics of the coupled system consisting of subsystems, demonstrating the Neimark–Sacker bifurcation. The study of coupled maps on the plane of the parameters responsible for such bifurcation in the individual subsystems is realized. On the plane of parameters characterizing the rotation numbers of the individual subsystems we reveal the complex structures consisting of the quasi-periodic modes of different dimensions and the exact periodic resonances of different orders.
    Keywords: maps, bifurcations, phenomena of quasiperiodicity
    Citation: Kuznetsov A. P., Pozdnyakov M. V., Sedova Y. V., Coupled universal maps demonstrating Neimark–Saker bifurcation, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 3, pp.  473-482

    Download File
    PDF, 672.8 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License