Impact Factor

    Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    2012, Vol. 8, No. 4, pp.  799-813

    Author(s): Ramodanov S. M., Tenenev V. A., Treschev D. V.

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are represented in the form of the Kirchhoff equations. In the case of piecewise continuous controls, the integrals of motion are indicated. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. An optimal control problem for several types of the inputs is then solved using genetic algorithms.
    Keywords: perfect fluid, self-propulsion, Flettner rotor
    Citation: Ramodanov S. M., Tenenev V. A., Treschev D. V., Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 4, pp.  799-813

    Download File
    PDF, 719.38 Kb

    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License