Vol. 19, no. 1

Vol. 19, no. 1, 2023

Kilin A. A.,  Ivanova T. B.
This paper addresses the problem of a sphere with axisymmetric mass distribution rolling on a horizontal plane. It is assumed that there is no slipping of the sphere as it rolls in the direction of the projection of the symmetry axis onto the supporting plane. It is also assumed that, in the direction perpendicular to the above-mentioned one, the sphere can slip relative to the plane. Examples of realization of the above-mentioned nonholonomic constraint are given. Equations of motion are obtained and their first integrals are found. It is shown that the system under consideration admits a redundant set of first integrals, which makes it possible to perform reduction to a system with one degree of freedom.
Keywords: nonholonomic constraint, first integral, integrability, reduction
Citation: Kilin A. A.,  Ivanova T. B., The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 3-17
Garashchuk I. R.,  Sinelshchikov D. I.
We study a model of three Hindmarsh – Rose neurons with directional electrical connections. We consider two fully-connected neurons that form a slave group which receives the signal from the master neuron via a directional coupling. We control the excitability of the neurons by setting the constant external currents. We study the possibility of excitation of the slave system in the stable resting state by the signal coming from the master neuron, to make it fire spikes/bursts tonically. We vary the coupling strength between the master and the slave systems as another control parameter. We calculate the borderlines of excitation by different types of signal in the control parameter space. We establish which of the resulting dynamical regimes are chaotic. We also demonstrate the possibility of excitation by a single burst or a spike in areas of control parameters, where the slave system is bistable. We calculate the borderlines of excitation by a single period of the excitatory signal.
Keywords: chaos, neuronal excitability, Hindmarsh – Rose model
Citation: Garashchuk I. R.,  Sinelshchikov D. I., Excitation of a Group of Two Hindmarsh – Rose Neurons with a Neuron-Generated Signal, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 19-34
Tsirlin A. M.
Methods of simplifying optimal control problems by decreasing the dimension of the space of states are considered. For this purpose, transition to new phase coordinates or conversion of the phase coordinates to the class of controls is used. The problems of heat exchange and parametric control of oscillators are given as examples: braking/swinging of a pendulum by changing the length of suspension and variation of the energy of molecules’ oscillations in the crystal lattice by changing the state of the medium (exposure to laser radiation). The last problem corresponds to changes in the temperature of the crystal.
Keywords: change of state variables, problems linear in control, heat exchange with minimal dissipation, parametric control, oscillation of a pendulum, ensemble of oscillators
Citation: Tsirlin A. M., Methods of Simplifying Optimal Control Problems, Heat Exchange and Parametric Control of Oscillators, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 35-48
Udalov A. A.,  Uleysky M. Y.,  Budyansky M. V.
A dynamically consistent model of a meandering jet stream with two Rossby waves obtained using the law of conservation of potential vorticity is investigated. Stationary points are found in the phase space of advection equations and the type of their stability is determined analytically. All topologically different flow regimes and their bifurcations are found for the stationary model (taking into account only the first Rossby wave). The results can be used in the study of Lagrangian transport, mixing, and chaotic advection in problems of cross-frontal transport in geophysical flows with meandering jets.
Keywords: stationary points, separatrices reconnection, jet flow
Citation: Udalov A. A.,  Uleysky M. Y.,  Budyansky M. V., Analysis of Stationary Points and Bifurcations of a Dynamically Consistent Model of a Two-dimensional Meandering Jet, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 49-58
Indeitsev D. A.,  Zavorotneva E. V.,  Lukin A. V.,  Popov I. A.,  Igumnova V. S.
This article presents an analytical study of the dynamics of a micromechanical integrating gyroscope with a disk resonator. A discrete dynamic model of the resonator is obtained, taking into account the axial anisotropy of its mass and stiffness properties, as well as the action of the electrical control system of oscillations. An analysis of the spectral problem of disk vibrations in the plane is carried out. The nonlinear dynamics of the resonator in the regimes of free and parametrically excited vibrations are investigated. In the mode of parametric oscillations, qualitative dependencies of the gyroscopic drift on the operating voltage, angular velocity and parameters of defects are obtained.
Keywords: MEMS, MRIG, nonlinear dynamics, BAW, parametric excitation
Citation: Indeitsev D. A.,  Zavorotneva E. V.,  Lukin A. V.,  Popov I. A.,  Igumnova V. S., Nonlinear Dynamics of a Microscale Rate Integrating Gyroscope with a Disk Resonator under Parametric Excitation, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 59-89
Baranov D. A.,  Grines V. Z.,  Pochinka O. V.,  Chilina E. E.
In this paper, following J. Nielsen, we introduce a complete characteristic of orientationpreserving periodic maps on the two-dimensional torus. All admissible complete characteristics were found and realized. In particular, each of the classes of orientation-preserving periodic homeomorphisms on the 2-torus that are nonhomotopic to the identity is realized by an algebraic automorphism. Moreover, it is shown that the number of such classes is finite. According to V. Z. Grines and A.Bezdenezhnykh, any gradient-like orientation-preserving diffeomorphism of an orientable surface is represented as a superposition of the time-1 map of a gradient-like flow and some periodic homeomorphism. Thus, the results of this work are directly related to the complete topological classification of gradient-like diffeomorphisms on surfaces.
Keywords: gradient-like flows and diffeomorphisms on surfaces, periodic homeomorphisms, torus
Citation: Baranov D. A.,  Grines V. Z.,  Pochinka O. V.,  Chilina E. E., On a Classification of Periodic Maps on the 2-Torus, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 91-110
Golokolenov A. V.,  Savin D. V.
This article deals with the dynamics of a pulse-driven self-oscillating system — the Van der Pol oscillator — with the pulse amplitude depending on the oscillator coordinate. In the conservative limit the “stochastic web” can be obtained in the phase space when the function defining this dependence is a harmonic one. The paper focuses on the case where the frequency of external pulses is four times greater than the frequency of the autonomous system. The results of a numerical study of the structure of both parameter and phase planes are presented for systems with different forms of external pulses: the harmonic amplitude function and its power series expansions. Complication of the pulse amplitude function results in the complication of the parameter plane structure, while typical scenarios of transition to chaos visible in the parameter plane remain the same in different cases. In all cases the structure of bifurcation lines near the border of chaos is typical of the existence of the Hamiltonian type critical point. Changes in the number and the relative position of coexisting attractors are investigated while the system approaches the conservative limit. A typical scenario of destruction of attractors with a decrease in nonlinear dissipation is revealed, and it is shown to be in good agreement with the theory of 1:4 resonance. The number of attractors of period 4 seems to grow infinitely with the decrease of dissipation when the pulse amplitude function is harmonic, while in other cases all attractors undergo destruction at certain values of dissipation parameters after the birth of high-period periodic attractors.
Keywords: nonlinear dynamics, saddle-node bifurcation, stochastic web, Lyapunov exponent, multistability
Citation: Golokolenov A. V.,  Savin D. V., Attractors of a Weakly Dissipative System Allowing Transition to the Stochastic Web in the Conservative Limit, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 111-124
Popkov Y. S.
This paper considers dynamic systems with an entropy operator described by a perturbed constrained optimization problem. Oscillatory processes are studied for periodic systems with the following property: the entire system has the same period as the process generated by its linear part. Existence and uniqueness conditions are established for such oscillatory processes, and a method is developed to determine their form and parameters. Also, the general case of noncoincident periods is analyzed, and a method is proposed to determine the form, parameters, and the period of such oscillations. Almost periodic processes are investigated, and existence and uniqueness conditions are proved for them as well.
Keywords: entropy, dynamic systems, optimization, oscillatory process
Citation: Popkov Y. S., Oscillations in Dynamic Systems with an Entropy Operator, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 125-135
Semernik I. V.,  Bender O. V.,  Tarasenko A. A.,  Samonova C. V.
In this article, a method for increasing the noise immunity of an underwater wireless optical communication system by applying chaotic oscillations is considered. To solve this problem, it is proposed to use modulation methods based on dynamical chaos at the physical level of the communication channel.
Communication channel modeling is implemented by calculating the impulse response using a numerical solution of the radiation transfer equation by the Monte Carlo method. The following modulation methods based on the correlation processing of the received signal are considered: chaotic mode switching, chaotic on-off keying (COOK). On-off keying (OOK) modulation was chosen as a test modulation method to assess the degree of noise immunity of the modulation methods under study.
An analysis of the noise immunity of an underwater optical communication channel with a change in its length and parameters of the aquatic environment, which affect the absorption and scattering of optical radiation in the communication channel, is carried out.
It is shown that modulation methods based on the phenomenon of dynamic chaos and correlation processing can improve the noise immunity of underwater wireless communication systems. This provides the possibility of signal recovery at negative values of the signal-to-noise ratio. It is shown that the considered modulation methods (COOK and switching of chaotic modes) in combination with the correlation processing of the signal at the physical level of the communication channel provide an advantage of about 15 dB compared to OOK modulation.
Keywords: underwater communication, optical communication, wireless communication, dynamical chaos, noise immunity, wideband signals, communication channel modeling, modulation, Monte Carlo method
Citation: Semernik I. V.,  Bender O. V.,  Tarasenko A. A.,  Samonova C. V., Analysis and Simulation of BER Performance of Chaotic Underwater Wireless Optical Communication Systems, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 137-158
Citation: Vladislav Sergeevich Medvedev. On the Occasion of his 80th Birthday, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 1, pp. 159-163

Back to the list