0
2013
Impact Factor

    Valentin Tenenev

    Valentin Tenenev
    Studencheskaya st., 7, Izhevsk 426069, Russia
    Izhevsk State Technical University, Russia

    Professor Izhevsk State Technical University

    Publications:

    Tenenev V. A., Vetchanin  E. V., Ilaletdinov L. F.
    Abstract
    This paper is concerned with the process of the free fall of a three-bladed screw in a fluid. The investigation is performed within the framework of theories of an ideal fluid and a viscous fluid. For the case of an ideal fluid the stability of uniformly accelerated rotations (the Steklov solutions) is studied. A phenomenological model of viscous forces and torques is derived for investigation of the motion in a viscous fluid. A chart of Lyapunov exponents and bifucation diagrams are computed. It is shown that, depending on the system parameters, quasiperiodic and chaotic regimes of motion are possible. Transition to chaos occurs through cascade of period-doubling bifurcations.
    Keywords: ideal fluid, viscous fluid, motion of a rigid body, dynamical system, stability of motion, bifurcations, chart of Lyapunov exponents
    Citation: Tenenev V. A., Vetchanin  E. V., Ilaletdinov L. F.,  Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid, Rus. J. Nonlin. Dyn., 2016, Vol. 12, No. 1, pp. 99-120
    DOI:10.20537/nd1601007
    Ramodanov S. M., Tenenev V. A., Treschev D. V.
    Abstract
    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are represented in the form of the Kirchhoff equations. In the case of piecewise continuous controls, the integrals of motion are indicated. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. An optimal control problem for several types of the inputs is then solved using genetic algorithms.
    Keywords: perfect fluid, self-propulsion, Flettner rotor
    Citation: Ramodanov S. M., Tenenev V. A., Treschev D. V.,  Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 4, pp. 799-813
    DOI:10.20537/nd1204009
    Vetchanin  E. V., Mamaev I. S., Tenenev V. A.
    Abstract
    An investigation of the characteristics of motion of a rigid body with variable internal mass distribution in a viscous fluid is carried out on the basis of a joint numerical solution of the Navier–Stokes equations and equations of motion. A non-stationary three-dimensional solution to the problem is found. The motion of a sphere and a drop-shaped body in a viscous fluid, which is caused by the motion of internal material points, in a gravitational field is explored. The possibility of motion of a body in an arbitrary given direction is shown.
    Keywords: finite-volume numerical method, Navier-Stokes equations, variable internal mass distribution, motion control
    Citation: Vetchanin  E. V., Mamaev I. S., Tenenev V. A.,  The motion of a body with variable mass geometry in a viscous fluid, Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 4, pp. 815-836
    DOI:10.20537/nd1204010
    Ramodanov S. M., Tenenev V. A.
    Abstract
    In the paper we consider the motion of a rigid body in a boundless volume of liquid. The body is set in motion by redistribution of internal masses. The mathematical model employs the equations of motion for the rigid body coupled with the hydrodynamic Navier–Stokes equations. The problem is mostly dealt with numerically. Simulations have revealed that the body’s trajectory is strongly governed by viscous effects.
    Keywords: self-propulsion, Navier–Stokes equations, viscous vortical motion, numerical methods
    Citation: Ramodanov S. M., Tenenev V. A.,  Motion of a body with variable distribution of mass in a boundless viscous liquid, Rus. J. Nonlin. Dyn., 2011, Vol. 7, No. 3, pp. 635-647
    DOI:10.20537/nd1103016

    Back to the list